首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 328 毫秒
1.
现场大空间测量中精密三维坐标控制网的建立   总被引:6,自引:0,他引:6  
全局测量与精度控制是超大空间内精密测量的基础,决定着整体测量的性能和适用性。为提高整体空间测量精度,同时解决定向及尺度问题,必须在全局空间内布设高精度测量控制网。三维坐标测量作为几何量测量的重要代表,是建立控制网最直接且约束最强的控制条件。为建立大空间精密三维坐标控制网,采用激光跟踪仪多站位对空间全局控制点进行三维坐标测量,结合奇异值分解算法完成各站位的方位定向,并利用激光跟踪仪极高精度的测距值作为约束,对跟踪仪测角误差进行优化,进一步提高坐标控制网的精度。将该控制网建立方法应用于某飞机机翼表面形貌测量,实现激光跟踪仪全局控制与终端摄影测量的高效组合,以不同若干站位下全局控制点间距离比对结果表明该控制网对现场测量精度和可靠性的提高具有良好效果。  相似文献   

2.
激光跟踪仪测角误差补偿   总被引:1,自引:0,他引:1  
由于激光跟踪仪的角度测量精度直接影响仪器的测量精度,本文提出了用自准直仪结合多面棱体对跟踪仪金属圆光栅测角误差进行离散标定的方法。研究了基于谐波分析的误差补偿方法,取金属柱面圆光栅测角误差中幅值较大且相位基本不变的谐波分量建立了补偿模型,避免了最小二乘法不收敛的问题。分析了标定测角误差的不确定度,结果显示:水平测角精度补偿前后分别为1.60"和0.90",俯仰测角精度补偿前后分别为4.89"和0.91",精度分别提高了44%和81%,从角秒级提高到了亚角秒级。结果表明,提出的方法可为激光跟踪仪水平和俯仰轴系提供测角误差补偿,对类似测角系统的误差补偿也有参考价值。  相似文献   

3.
为了解决大尺寸空间角测量中测量基准难以建立、传递的难题,提出一种基于跟踪仪的空间角测量原理,并用自准直仪结合多面棱体对其测角误差进行标定。首先利用跟踪仪测量出基准参考轴和被测轴在惯性坐标系中的单位向量坐标,然后建立空间角测量的数学模型并实现空间角的计算,同时利用自准直仪结合多面棱体标定其测角误差。最后构建了测量系统的原理样机进行测量实验。测量结果表明样机的实际测量误差为11',满足测量精度要求。该测量原理采用跟踪仪的的惯性测量基准坐标系作为公共测量基准,有效的解决了空间角测量中测量基准难以建立、传递的难题,使得测量过程变得更加灵活。  相似文献   

4.
提出了面向特大型齿轮的激光跟踪多站位定位测量方法以提高特大型齿轮激光跟踪在位测量系统的齿轮定位精度并精确确定测量仪器与被测齿轮位置与姿态的关系。根据激光跟踪仪多站位测量提供的冗余数据优化求解空间两点间共线方程,建立了特大型齿轮激光跟踪多站位测量模型。然后,提出了利用奇异值分解修正多站位测量模型解析矩阵条件数的方法。 实验结果表明,使用多站位测量模型求得的不同站位待测点间距离的标准差的均值为0.008 mm,明显小于直接在不同站位下测量的标准差均值0.024 mm,表明多站位测量模型具有良好精度控制效果。本文的研究提高了齿轮定位时所需测量点的三维测量精度,为特大型齿轮激光跟踪多站位测量系统建立齿轮坐标模型提供了可靠的数据来源。  相似文献   

5.
为实现大空间域激光跟踪仪的高精度测量,本文针对由转站误差导致的激光跟踪仪分时多基站测量精度难保证的问题,提出了基于多站位下单台激光跟踪仪测量误差的转站误差模型与转站参数修正的补偿方法。首先分析了激光跟踪仪测量误差的来源以及具体形式,阐述了激光跟踪仪测量误差影响空间任意点测量精度的具体形式;其次分析了激光跟踪仪的随机测量误差和系统测量误差对多基站转站参数求解精度的影响。在此基础上,建立了考虑随机、系统测量误差的激光跟踪仪多基站转站误差模型和转站参数误差补偿模型。蒙特卡洛仿真结果表明:当激光跟踪仪的长度测量误差为0.5μm/m,角度测量误差为5μm+6μm/m时,最大转站误差为0.174 7mm,补偿后最大转站误差为0.04mm,转站精度提高了77%。分时多基站转站测量实验结果表明:直接转站测量时最大转站误差为0.054 2mm,补偿后转站误差为0.033 1mm,转站精度提升了38.9%。激光跟踪转站补偿后测量精度有明显的提高。  相似文献   

6.
为了提高激光跟踪仪的测量精度,分析了跟踪仪的几何结构误差,重点研究了其转镜倾斜误差的标定和修正方法。利用矢量分析和坐标转换相结合的方法建立了跟踪仪转镜倾斜误差模型,推导出了跟踪仪几何空间坐标修正公式,并基于自准直仪、多面棱体和可调反射镜建立了高精度误差标定装置。利用标定装置分析了误差标定方法,通过系统仿真研究了转镜倾斜误差对系统测角误差及最终坐标测量误差的影响。利用误差标定实验检测出的系统转镜倾斜误差约为4″,将其带入坐标修正公式,并与修正前的坐标进行了比对分析。对比结果显示,经误差修正后系统空间坐标测量误差可减小约2×10-6,验证了转镜倾斜误差标定和误差修正方法的有效性,表明利用该方法可在不改变系统硬件结构的基础上提高测量系统的测量精度。  相似文献   

7.
针对大尺度空间中构件特征隐藏区的空间坐标测量,提出了一种基于无衍射光束的测量探针,并将该探针与全站仪结合构成了空间坐标组合测量系统。介绍了探针姿态测量系统和组合测量系统的结构与原理。测量时,首先将探针测头接触于被测点,并用全站仪或激光跟踪仪瞄准探针的光学系统,测得探针的空间位置坐标。接着,使用探针将测距激光通过axicon透镜变换为无衍射光,并由CCD摄像机获得图像。由无衍射光的中心一对一映射激光的入射方向,通过无衍射光图像定中计算,获得探针的水平角和俯仰角。最后,通过电子倾角仪测得探针滚动角;联合测得各姿态角和位置坐标,通过坐标变换,计算得出被测点的空间坐标。实验显示,该探针的姿态角测量精度为1mrad,组合测量空间位置偏差为±1mm,表明基于无衍射光束的探针与全站仪所构成的组合测量系统可满足大尺度空间中特征隐藏区空间坐标测量的要求。  相似文献   

8.
激光跟踪测量系统角度自动校正装置设计   总被引:5,自引:5,他引:0  
激光跟踪测量系统是目前最新型的便携式空间大尺寸坐标测量系统,利用激光干涉测长、精密测角及目标跟踪技术,可对任意点的空间位置进行实时跟踪测量。然而,目标反射器接收角度的大小严重影响了激光跟踪测量系统角度测量精度,为解决激光跟踪测量系统在动态测量中因角锥棱镜逆反射器接收角度范围限制而导致无法测量问题,研制开发了一种能使激光跟踪测量系统在动态条件下连续测量的角度自动校正装置。它主要由精密圆形导轨和角度方位自动调节机构组成,能使角锥棱镜在动态测量过程中始终指向激光跟踪测量系统,从而实现在动态条件下的连续工作。最后利用研制角度自动校正装置对激光跟踪测量系统进行了角度误差补偿实验,结果表明该装置使激光跟踪测量系统的水平角测量误差由34.69µm减小到9.71µm,垂直角测量误差由35.43µm减小到10.03µm,从而有效地提高了激光跟踪测量系统的角度测量精度。  相似文献   

9.
激光跟踪仪多边测量的不确定度评定   总被引:1,自引:0,他引:1  
激光跟踪仪多边测量是大型高端装备制造现场溯源的重要手段,正确评定其不确定度是确保制造过程量值统一、结果可靠的关键。本文提出了一种准确、快速的激光跟踪仪多边测量的不确定度评定方法。从仪器误差、环境干扰及靶球制造误差等方面分析激光跟踪仪多边测量的不确定度来源。针对多边测量的输出量为多维向量的特点,重点研究基于多维不确定度传播律(GUM法)的不确定度合成方法,同步评定目标点坐标和跟踪仪站位的不确定度。最后,介绍了点到点长度的不确定度计算方法。实验表明:GUM法评定的不确定度结果与蒙特卡洛法(MCM法)的结果相比,坐标不确定度偏差小于0.000 2 mm,相关系数偏差小于0.01,满足数值容差,且GUM法用时仅为MCM法的0.08%;点到点长度测试的En值均小于1。因此,基于GUM法评定激光跟踪仪多边测量的不确定度具有可行性及高效性,且评定结果正确、可靠。  相似文献   

10.
张白  林家春 《机械传动》2019,43(10):146-150
为了测量特大型齿轮齿距偏差,提出了基于激光跟踪仪的特大型直齿轮齿距测量新方法。利用激光跟踪仪的大空间测量能力测量齿轮齿槽,分别获得被测特大型直齿轮相邻两条齿距误差曲线。由于被测齿轮直径超过6 000 mm,可以根据点到直线距离公式近似计算单个齿距误差。首先,分析了传统方法下基于激光跟踪仪构建齿轮工件坐标系后的齿距测量模型,并根据特大型直齿轮的特点,提出了基于激光跟踪仪的无坐标系特大型直齿轮齿距误差测量模型。测量模型回避了特大型齿轮工件坐标系的建立,直接对齿槽进行双面接触测量;通过对两条齿槽测量直线进行误差评定即可获得单个齿距最大误差与单个齿距平均误差,通过转站测量实现齿距累积总偏差的测量;最后,采用蒙特卡罗法对不同测量方法的测量不确定度进行仿真分析,得出系统测量不确定度。实验结果表明,提出的基于激光跟踪仪的特大型直齿轮齿距偏差测量方法满足直径6 000 mm以上的8级精度特大型齿轮的单个齿距偏差测量要求,满足直径6 000 mm以上的10级精度特大型齿轮的齿距累积总偏差测量要求。  相似文献   

11.
光束平差在激光跟踪仪系统精度评定中的应用   总被引:4,自引:2,他引:2  
对自主研制的激光跟踪仪的精度评定进行研究,以期解决大尺寸空间坐标测量系统的空间坐标精度难于评定的问题.考虑现场环境条件、仪器状态和操作者技能等因素对测量精度影响都很大,提出了基于光束平差原理对激光跟踪仪系统进行精度评定的方法.通过Matlab软件对激光跟踪仪的精度评定进行了仿真,仿真结果显示光束平差法能客观地反映激光跟踪仪的测量精度.另外,使用Faro生产的激光跟踪仪进行了实物实验,实验结果显示其水平角精度σH为1.97″,垂直角精度σV为2.61″,测距精度σD为3.75×10-6,对比Faro生产的激光跟踪仪精度(σH =2.0″;σV =2.0″;σD=4 μm)可证明采用光束平差法评定自主研发的激光跟踪仪测量精度是正确、可行的.该方法为探索激光跟踪仪新的应用技术、开展面向对象的测量不确定评定奠定了基础.  相似文献   

12.
Laser tracker has been used in a diverse range of applications due to its high accuracy and efficient, specifically as measuring the coordinates of points or scanning shape of objects. In real applications, we often need to measure common points on multi-stations by using this technology if objects are large scale. To ensure every common point within the range of laser tracker, common points are usually placed far from the laser tracker. However, the long distance between common points and laser tracker will decrease the accuracy of the result. In this research, we proposed a new method where photogrammetry and laser tracker are integrally used to measure common points to reduce measurement error. With the help of photogrammetry, we first constructed the geometric constraints of common points. Then, by using graphic correction method, the coordinates of common points on laser tracker will be corrected. Both of the theoretical and experimental study results indicated the great success of improving the measurement accuracy of laser tracker. We consider that this method we reported can highly increase the accuracy of measurement on laser tracker station-transfer.  相似文献   

13.
At present, the detection of rotary axis is a difficult problem in the errors measurement of NC machine tool. In the paper, a method with laser tracker on the basis of multi-station and time-sharing measurement principle is proposed, and this method can rapidly and accurately detect the rotary axis. Taking the turntable measurement for example, the motion of turntable is measured by laser tracker at different base stations. The redundant equations can be established based on the large amount of measured data concerning the distance or distance variation between measuring point and base station. The coordinates of each measuring point during turntable rotation can be accurately determined by solving the equations with least square method. Then according to the error model of rotary axis, the motion error equations of each measuring point can be established, and each error of turntable can be identified. The algorithm of multi-station and time-sharing measurement is derived, and the error separation algorithm is also deduced and proved feasible by simulations. Results of experiment show that a laser tracker completes the accuracy detection of the turntable of gear grinding machine within 3 h, and each error of the turntable are identified. The simulations and experiments have verified the feasibility and accuracy of this method, and the method can satisfy the rapid and accurate detecting requirements for rotary axis of multi-axis NC machine tool.  相似文献   

14.
This paper presents a new kinematic model, a parameter identification procedure and a sensitivity analysis of a laser tracker having the beam source in the rotating head. This model obtains the kinematic parameters by the coordinate transformation between successive reference systems following the Denavit–Hartenberg method. One of the disadvantages of laser tracker systems is that the end-user cannot know when the laser tracker is working in a suitable way or when it needs an error correction. The ASME B89.4.19 Standard provides some ranging tests to evaluate the laser tracker performance but these tests take a lot of time and require specialized equipment. Another problem is that the end-user cannot apply the manufacturer’s model because he cannot measure physical errors. In this paper, first the laser tracker kinematic model has been developed and validated with a generator of synthetic measurements using different meshes with synthetic reflector coordinates and known error parameters. Second, the laser tracker has been calibrated with experimental data using the measurements obtained by a coordinate measuring machine as nominal values for different strategies, increasing considerably the laser tracker accuracy. Finally, a sensitivity analysis of the length measurement system tests is presented to recommend the more suitable positions to perform the calibration procedure.  相似文献   

15.
目的: 为了实现对工件进行自动高效地测量,建立了激光制导测量机器人系统,研制了测量机器人样机。对测量机器人的光靶自动跟踪装置旋转轴偏心误差和光靶与两轮中心连线误差进行了研究。方法:首先,介绍了基于“光束运动-光靶跟踪”理论的激光制导测量机器人技术和原理。接着,根据系统原理,研制了实验样机,并给出其理想的几何关系。然后,推出了旋转轴偏心误差和光靶与两轮中心连线误差几何误差数学模型。最后,利用三坐标测量机与激光制导测量机器人系统对样机进行了比对实验。结果:实验结果表明:光靶中心偏离理想位置的误差(x轴)为0.13mm。结论:对激光制导测量机器人移动反馈控制系统的设计和实现具有指导性作用。  相似文献   

16.
To expand the measurement target from that containing simple cylindrical-shaped components to complex-shaped components that have several directional tilted surfaces, we determined an issue in measuring the rough surfaces with laser distance measurement. The issue is that laser speckle causes measurement error, which amount, we found, can be determined by the diameter and irradiation angle of the measurement laser beam. We then developed two error-reduction techniques that are based on the optical properties of a detected waveform and power. We conducted a basic experiment and a feasibility study with actual samples, to evaluate the distance measurement performance of targets with various surface roughness and irradiation angles. The roughness and angle range of the evaluation was determined considering actual measurement needs in parts manufacturing. We confirmed that the measurement error, whose maximum value was nearly 80 μm, decreased to less than 20 μm using our proposed local-maximum-power-based technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号