首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
针对光学元件的面形测量,提出了一种被测件随机移相干涉面形测量法,用于降低移相干涉仪的成本,避免移相器老化产生的移相误差对面形检测精度的影响。该方法利用微位移驱动器驱动被测件在摩擦气浮复合导轨上移动进行随机移相并用相机采集若干幅干涉图;然后利用最小二乘迭代算法处理干涉图数据进而迭代出被测表面相位分布;最后进行一系列数据处理求解出被测件的面形结果。为了验证该方法的可行性,在实验室搭建了改进的斐索移相干涉系统,并选用一个凹面镜和一个平面镜作为被测件在搭建的系统上进行了实验测试,同时与同台仪器上的传统移相方法得到的测量结果进行了比对。结果表明:在激光光源波长λ为632.8nm的情况下,凹球面镜面形PV值和RMS值与传统移相方式测量结果相差0.001λ,和0.002λ;平面镜面形PV值和RMS值与传统移相方式的测量结果相差0.002λ和0.003λ,面形数据基本一致。该方法避免了移相器老化引入移相误差,降低了仪器成本,测量精度高。  相似文献   

2.
<正> 富通光电工程公司新近开发出 LDI—2激光数字波面干涉仪。仪器采用独特的数字移相方法,可进行实时数字干涉测量。这种干涉仪可用于精确定量测量凹球面镜的面形误差和曲率半径。配备辅助光学件后,本仪器还可以测量凸球面、平面、非球面镜的面形误差以及光学系统的波像差等。仪器最大可测孔径达 F1.3,仪器不确定度λ/50(F4)、λ/5(F1.3)。  相似文献   

3.
针对二维工作台测量镜本身的面形误差以及装调等因素引起面形变化对二维工作台定位精度的影响,提出了一种用于纳米精度二维工作台测量镜面形误差的在线检测方法。利用两路激光干涉仪检测面形微分数据的基本原理,分析了零点误差和积分累计误差对测量镜面形误差检测的影响并提出了改进方法。利用三路激光干涉仪组成两组不等跨度的检测机构,得到两组工作台测量镜面形的原始数据,通过这两组数据之间的关系修正跨度间的面形细节误差,得到了精确的测量镜面形误差量。对此方法进行了理论推导、仿真计算和实验验证,并将结果与Zygo干涉仪测量得到的离线检测结果进行了对比,结果显示其差异在±10nm之间,且趋势有较好的一致性。得到的结果验证了提出的方法可正确测量和真实地还原测量镜的面形误差。  相似文献   

4.
采用双球面法对立式Fizeau干涉仪的参考球面进行标定以确定由重力、安装夹持力等导致的面形形变量,提高立式光学系统中光学元件的面形检测精度.首先,推导了双球面法标定算法;进而,理论分析和模拟计算了影响检测精度的环境、重力、安装夹持力等因素;最后,利用双球面法对立式Fizeau干涉仪的参考球面进行标定,并利用误差合成理论分析实验结果.实验结果显示,利用双球面法标定F/1.5的立式Fizeau干涉仪参考面的精度为2.3 nm.其中,算法本身以及实验操作引起的测量重复性不大于0.7 nm,包含环境误差时的重复性低于1.2 nm;重力导致的面形形变约为0.9 nm,标准镜安装导致的面形形变约为1.7 nm.结果论证了双球面法具有很高的标定精度;环境对检测精度的影响与干涉腔长度有关,长度增加时影响很明显;立式工作时,重力、安装等因素导致的标准镜参考球面的面形形变很大,在高精度使用前必须进行标定.  相似文献   

5.
曲艺  苏东奇 《光学仪器》2015,37(6):522-525
设计了一款口径为30.48cm高精度斐索激光干涉仪参考镜,其F数为0.82,参考面半径为224.99mm。所设计的参考镜其透射波前峰谷值为0.095λ,均方根值为0.028λ,透射波前斜率最大值为11μrad。理论分析了参考镜的回程误差对面形检测精度的影响,其最大值为0.29nm。利用Zemax光学设计软件对参考镜进行了仿真分析,仿真与实验结果表明,该标准镜头可满足精度1nm的元件面形检测需求。  相似文献   

6.
小型非球面轮廓测量仪的原理及应用   总被引:3,自引:3,他引:3  
介绍了自行研制的FLY-I非球面轮廓仪的设计以及测量软件数学模型,其实用精度为1~2 μm.光学元件的抛光精度取决于精磨精度,本实验室现有的LOH高精度铣磨机床经过对第1次精磨后的光学元件面形进行修正,2次精磨后其精磨精度可达到2 μm.研究了这一非球面轮廓仪以配合LOH铣磨机床,测量得到1次精磨后的面形误差数据,经过误差反馈进行2次精磨,以保证光学元件的精磨精度.通过多次实验以及数据处理、分析,证明自行设计、装调的非球面轮廓仪达到了设计的精度要求,可满足实验室,光学加工车间对小型非球面精磨阶段面形的检测要求,即精磨面形误差在2 μm以内,同时也可直接用于中低精度非球面光学元件的最终检测.  相似文献   

7.
全视场外差动态干涉仪在面形测量方面具有测量精度高、抗干扰能力强等优点,适合用于长焦距面形的动态干涉测量以及大口径光学元件的测量。但是干涉仪系统内部光学元件性能不理想以及元件装配存在误差等,会在干涉光路中引入频率混叠,影响干涉仪的测量精度。为了分析混频对全视场外差动态干涉仪测量精度的影响,从混频产生的原因出发,建立了由混频引入的测量误差的理论模型,分析了混频程度对测量精度的影响,分析结果表明,测量误差与混频程度呈非线性正相关,混频会造成测量面形结果上叠加一个和干涉条纹相同频率的周期性误差。搭建了全视场外差动态干涉测量实验系统,验证了不同混频程度对面形测量精度的影响,当混频程度为0.029时,面形测量误差为0.053λ;当混频程度为0.120时,面形测量误差为0.110λ,与仿真分析结果吻合。本文的研究对研制高精度全视场外差动态干涉仪具有实际意义。  相似文献   

8.
介绍了Ф420mm熔石英高次非球面透镜的加工与检测方法。对现有数控加工工艺进行了优化,通过分工序加工方式,依次采用机器人研磨、抛光和离子束修形技术完成了透镜的加工。进行非球面透镜检测时,考虑透镜的凹面为球面,利用球面波干涉仪对其面形进行了直接检测,剔除干涉仪标准镜镜头参考面误差后,透镜凹面的精度达到0.011λ-RMS;针对透镜的凸面为高次非球面,采用基于背后反射自准法的零位补偿技术对其进行面形检测,其精度达到0.013λ-RMS。最后,采用一块高精度标准球面镜对加工后透镜的透射波前进行了自消球差检测,得到其波前误差为0.013λ-RMS。试验结果表明,非球面透镜各项技术指标均满足设计要求。所述工艺方法亦适用于更大口径的非球面透镜及其他类型非球面光学元件的高精度加工.  相似文献   

9.
已经研制成功的SPG-1型激光数字波面干涉仪是激光技术、微机技术与干涉仪相结合而形成的一种新型光学面形的测试仪器。本文概述该仪器的设计指标及其依据,干涉系统的设计要求,设计结果,关键干涉元件的制造以及干涉系统的装调。仪器的最大口径为φ80mm,最高测量精度为λ/40,分辨率为λ/100,球面测量范围为500mm曲率半径以内.可以测量A级光学样板。干涉系统应有低的噪音、高的干涉条纹对比度及条纹亮度可调等要求。所采用的菲索型与泰曼型的干涉系统中,引入偏振元件而形成偏振干涉系统较好地满足了上述要求。仪器的自检误差优于0.04λ。为了使SPG-1型数字干涉仪及早产品化,提出了一个组合式的设计方案。  相似文献   

10.
刀口干涉仪     
一种使用刀口检验和干涉检验技术的刀口干涉仪被研制成功。其干涉仪采用了径向剪切系统,因此大尺寸光学元件容易被检测。实验结果表明因这台仪器检验大尺寸光学元件面形的精度达λ/20.  相似文献   

11.
高精度检测技术是促进光学加工技术发展的必备条件.ZYGO干涉仪检测光学表面面形代表着国际先进水平,常规检测精度取决于仪器配备的标准镜头(通常标准镜头精度为λ/10,最高精度可达λ/20),λ/20测量精度不能满足更高精度面形检测的需求.本文探讨了表面绝对检测技术及误差控制,通过用ZYGO干涉仪及两种精度等级的参考镜头对f/1.07的球面镜进行常规GPI干涉和双球面实时绝对检测比对,证明了表面绝对检测的有效性.实验及分析表明在超净实验室、高精度防振平台、高精密可旋转5维调整架及精密导轨的测量条件下,采用表面绝对测量技术,严格控制基准定位和共焦位置旋转角度定位,多次重复测量,λ/10标准镜头同样能够达到λ/30 PV的高精度检测目的.  相似文献   

12.
针对各种复杂光学与工业元件的表面面形等加工误差检测需求,提出了基于相位偏折术的透射波前检测方法。为获得由透射元件加工误差引入的波像差,建立相位偏折检测系统并对模型化系统进行光线追迹,由实际测量结果相对光线追迹结果的变化计算得到待测元件波像差。并用计算机辅助的结构误差校正方法,对系统结构误差进行校正。为验证检测方法的可行性和大动态范围,分别进行Zygo干涉仪比对实验与工业透射元件检测实验,并对工业透射元件检测中的全反射问题及影响进行分析。结果表明,所提出的检测方法不仅能达到与干涉检测方法相当的检测精度,还能实现大动态测量范围,为各种光学及工业透射元件提供了一种可行有效的波前检测方法。  相似文献   

13.
提出了阴影检测技术的一种新型数字化方法,用于定量测量光学元件表面的局部面形误差量.在阴影测量装置后搭建数字图像提取和处理系统,运用傅里叶光学原理进行测量方法的数学建模.利用数字图像系统提取阴影检测图像,通过对阴影检测图像特征的分析重构出光学元件面形.仿真结果表明,运用该模型提取一抛物面镜的面形信息,在一维径向方向上可以达到1 λ(λ=632.8 nm)RMS的重构精度,可以满足光学元件加工粗抛光阶段测量的要求.  相似文献   

14.
针对大口径离轴非球面系统加工与装调的难点,提出了非球面光学系统共基准加工与检测的方法,对该方法的基本原理和实现过程进行了分析和研究。当光学系统的主镜和第三镜面形的RMS值优于λ/10(λ=632.8nm)时,对主镜和第三镜进行共基准装调和测试,并进行背板一体化装嵌,然后利用离子束对其进行一体化共基准加工。结合工程实例,对一大口径非球面系统口径为724mm×247mm的非球面主镜和口径为632mm×205mm的第三镜进行了共基准加工与检测,最终利用离子束共基准一体化精抛光得到主镜和第三镜面形的RMS值分别为0.019λ和0.017λ,满足光学成像。  相似文献   

15.
波长调谐移相干涉技术是通过改变光波长来计算相位的。为了减少可调谐激光器在变波长进行移相时光功率的随机变化对相位计算产生的误差,本文提出了一套光强实时反馈控制系统和同步校准方案。首先分析了光强在某一范围内的随机变化产生测量误差,并选用合适的光电检测设备搭建了一套光强控制系统。该系统能够将光信号转化为电信号,并通过PID来实现对光强的控制。实验结果表明,本系统能够将光强的变化范围控制在±0.002 mW以内,其响应速度达到600 kHz,已远远超过干涉仪CCD的取图速度。最后,对口径为50 mm的光学元件进行表面形貌检测,加入本控制系统后,面形精度的测量指标PV值和RMS值分别提高了1.53×10^-2λ和2.43×10^-3λ,表明本系统在高精度的光学元件检测领域具有重要的实用价值。  相似文献   

16.
用于光学表面检测的数字波面干涉仪   总被引:2,自引:0,他引:2  
本文讨论了最近研制成功的用于光学表面检测的数字波面干涉仪。利用实时位相检测技术可以高精度重构出数字波面,叙述了仪器的光学系统,电子学接口和软件。该仪器可测定光学平面和球面的面形,精度分别达到λ/40和λ/20,由终端输出面形的数据。  相似文献   

17.
考虑菲佐型波长移相干涉仪中波长可调谐激光器光强与调节电压之间的关系会对相位计算精度造成影响,本文提出了一种基于光强自标定的波长移相算法。首先,分析了波长可调谐激光器调节电压与输出光强之间的关系,建立了数学模型;然后,依据最小二乘判据,推导出了波长移相干涉仪的光强自标定移相算法。最后,实施了仿真实验,通过计算机生成背景光强具有一定变化的12幅干涉图,利用所提出的算法进行了相位恢复。结果表明,提出的算法可以很好地免疫激光器的光强变化,实现高精度的相位恢复。对口径为100mm的平面镜的测量结果显示RMS为0.005λ,PV为0.073λ。与ZYGO干涉仪测量结果的比较显示,两次测量面形的偏差RMS为0.0014λ,PV为0.022λ。得到的结果证明了算法的可行性及在菲佐型波长移相干涉仪中的实用性。  相似文献   

18.
本文提出一种光学面形绝对实时检测与控制的新方法。从干涉图中可将干涉仪的系统误差与参考面误差分离出来,从而高精度地、实时地获得被检面的绝对数据。这对光学加工,实时检测以及提高光学系统质量具有理论和实际意义。本文给出实测结果,其测量精度可达到λ/50∽λ/100。  相似文献   

19.
为了提高激光跟踪仪的测量精度,分析了跟踪仪的几何结构误差,重点研究了其转镜倾斜误差的标定和修正方法。利用矢量分析和坐标转换相结合的方法建立了跟踪仪转镜倾斜误差模型,推导出了跟踪仪几何空间坐标修正公式,并基于自准直仪、多面棱体和可调反射镜建立了高精度误差标定装置。利用标定装置分析了误差标定方法,通过系统仿真研究了转镜倾斜误差对系统测角误差及最终坐标测量误差的影响。利用误差标定实验检测出的系统转镜倾斜误差约为4″,将其带入坐标修正公式,并与修正前的坐标进行了比对分析。对比结果显示,经误差修正后系统空间坐标测量误差可减小约2×10-6,验证了转镜倾斜误差标定和误差修正方法的有效性,表明利用该方法可在不改变系统硬件结构的基础上提高测量系统的测量精度。  相似文献   

20.
同心圆光栅二自由度误差测量系统   总被引:9,自引:2,他引:7  
提出了一种基于同心圆光栅莫尔条纹图象处理的超精密二自由度误差测量(TDFM)方法,介绍了该测量方法的基本原理,包括同心圆光栅莫尔条纹产生机理、三光栅光学系统原理、影像光学原理以及CCD莫尔条纹图象处理的方法.通过实验对实际测量系统进行了分析与标定,并将测量结果与双频激光干涉仪进行了比较.结果表明该测量方法可实现超精密二自由度的误差在线测量及补偿,测量精度优于0.1μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号