首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dangsheng  Shirong Ge 《Wear》2001,250(1-12):242-245
Friction and wear behavior of ultra-high molecular weight polyethylene (UHMWPE) sliding against Al2O3 ceramic under dry sliding, and lubrication of fresh plasma, distilled water and physiological saline were investigated with a self-made pin-on-disk apparatus at 37±1°C. The worn surfaces were examined with a scanning electron microscope (SEM). The results show that the friction behavior of UHMWPE is very sensitive to its water absorption state. The wear rate of UHMWPE under dry sliding is the highest and under plasma lubrication is the lowest. The wear mechanisms are different under dry friction and various lubricating conditions.  相似文献   

2.
The friction and wear behavior of ultra-high molecular weight polyethylene (UHMWPE) sliding against GCr15 steel and electroless Ni-P alloy coating under the lubrication of seawater was investigated and compared with that under dry sliding and lubrication of pure water and 3.5 wt.% NaCl solution, respectively. It was found that under the lubrication of aqueous medium, the friction and wear behavior of UHMWPE mainly depended on the corrosion of counterface and the lubricating effect of the medium. Because of serious corrosion of counterface by the medium, the wear rates of UHMWPE sliding against GCr15 under the lubrication of seawater and NaCl solution were much larger than that under other conditions, and such a kind of wear closely related to the corrosion of counterface can be reckoned as indirect corrosive wear. However, when sliding against corrosion-resistant Ni–P alloy under the lubrication of seawater, the lowest coefficient of friction and wear rate of UHMWPE were obtained, owing to superior lubricating effect of seawater. Moreover, periodic ripple patterns were observed on the worn surfaces of UHMWPE sliding against GCr15 under the lubrication of seawater and NaCl solution, which were ascribed to the intelligent reconstruction of surface microstructure of UHMWPE upon large plowing effect of the counterface asperities. Based on scanning electron microscopic (SEM) and three-dimensional (3D) profile analyses of the worn surfaces of UHMWPE, a stick–slip dynamic mechanism was proposed to illustrate the pattern abrasion of UHMWPE. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
人工髋关节超高分子量聚乙烯(UHMWPE)关节面磨损仍是影响置换关节远期寿命的主要因素,其仿真建模是对关节模拟机磨损测试手段的重要补充,也是实现置换关节临床前性能评估的有效方法。由多向运动产生的交叉剪切效应是影响UHMWPE磨损的主要原因之一,也是仿真建模的关键。现有理论方法将磨损深度确定为滑动距离的函数,并将90°交叉剪切运动条件下的磨损作为度量基准计算不同角度下的交叉剪切效应,但尚未考虑接触应力变量对磨损深度的影响。针对以上问题,提出了在垂直交叉剪切运动条件下将磨损深度表示为摩擦功函数的方法。该方法利用UHMWPE摩擦因数与接触压力的定量关系计算摩擦因数并确定摩擦功,解决了UHMWPE磨损交叉剪切效应中滑动距离与接触应力的耦合问题。基于磨损仿真新模型研究了36 mm直径的交联UHMWPE髋关节,并与已有ProSim模拟机试验结果进行了验证。结果显示该仿真模型可准确计算体积磨损和线性磨损等磨损量以及髋关节载荷方向改变对磨损的影响。磨损新模型为进一步仿真模拟奠定了有效基础。  相似文献   

4.
采用自行研制的往复摩擦磨损试验机,在法向载荷50 N、往复频率1 Hz、摩擦副接触形式为圆环外圆周/平面、初始线接触长度为6 mm、相对湿度为80%的试验条件下,研究了钛合金表面粗糙度、试验环境温度、试验延续时间、滑液成分等试验参数对UHMWPE/Ti6A14V摩擦副的往复摩擦磨损行为的影响.结果表明,这些试验参数均显著影响UHMWPE/Ti6A14V摩擦副的往复摩擦磨损行为;在环境温度20℃、25%小牛血清去离子水溶液边界润滑、180 min往复摩擦磨损试验条件下,当钛合金表面粗糙度由Ra0.04 μm增加至Ra0.06μm时,摩擦副的平均摩擦因数由0.033增加至0.096,UHMWPE试样磨损量由0.131 mm3,增加至0.149 mm3;在钛合金表面粗糙度为Ra0.06μm、25%小牛血清去离子水溶液边界润滑、180 min往复摩擦磨损试验条件下,当试验环境温度由10℃上升至37℃时,摩擦副的平均摩擦因数由0.135减少至0.077,UHMWPE试样磨损量由0.188 mm3减少至0.134 mm3.  相似文献   

5.
多孔UHMWPE软骨材料润滑性能的Stribeck研究   总被引:1,自引:0,他引:1  
采用T-L法制备出仿生多孔UHMWPE材料,测试了其与水的接触角;在不同的摩擦学条件下测试了普通UHMWPE和多孔UHMWPE试样与不锈钢接触时的润滑性能,并利用Stribeck润滑曲线分析了其润滑状态。结果表明:多孔结构能提高UHMWPE的亲水性能;水润滑条件下,普通UHMWPE表面只能形成边界润滑区域;仿生多孔UHM-WPE具有的多孔结构使得在高速低条件下能形成混合润滑区域,降低材料的摩擦磨损行为;牛血清润滑下普通UHM-WPE的润滑情况变化不大,多孔UHMWPE试样的Stribeck曲线谷底较宽,说明比水润滑条件下具有更好的润滑性能。  相似文献   

6.
在干摩擦工况下模拟水润滑膜严重破坏的极端情况,研究未经改性聚四氟乙烯(PTFE)、超高分子量聚乙烯(UHMWPE)和聚醚醚酮(PEEK)3种材料在不同转速和载荷下的摩擦磨损性能。结果表明:干摩擦工况下UHMWPE材料具有优异的耐磨性和良好的自润滑性能,压力对摩擦因数影响比转速大;PTFE材料具有稳定的摩擦因数,压力和转速对摩擦因数影响明显,耐磨性较差;PEEK材料摩擦因数较大,且相对容易受转速和压力变化的影响,但具有良好的耐磨性能。综合分析,在极端工况下UHMWPE的适应能力最好,PEEK次之, PTFE最差。  相似文献   

7.
针对纤维填料改性UHMWPE水润滑轴承的摩擦磨损性能进行研究。在平面摩擦磨损试验机上对玻璃纤维及碳纤维填料对UHMWPE复合材料摩擦性能进行试验,并分析GF-CF-UHMWPE材料与Thordon SXL材料在干摩擦、水润滑工况下的摩擦因数及磨损量。最后,采用径向水润滑轴承试验台对比研究了GF-CF-UHMWPE轴承和Thordon SXL轴承在不同载荷下摩擦因数随转速的变化规律。结果表明:纤维填料能显著增强UHMWPE的减摩性和耐磨性,GF-CF-UHMWPE材料具有更好的耐温性能,线性热膨胀系数也显著减小;GF-CF-UHMWPE轴承具有相同载荷下启动转速低,启动摩擦因数小的特性。  相似文献   

8.
The boundary lubrication regime plays a very important role in determining the life span of any of the two mating parts under liquid-lubricated conditions. It is during the start\stop cycles when insufficient fluid is available to fully separate the surfaces in relative motion and thus unusual wear takes place; a case of boundary lubrication. The aim of this work is to study the feasibility of using polymer coatings as boundary lubricants. This study investigates the friction and wear properties of ultra-high molecular weight polyethylene (UHMWPE) films coated on aluminium substrates under dry and base oil (without any additives)-lubricated conditions. In order to increase the load bearing capacity of the UHMWPE coatings, 0.1 wt% of single-walled carbon nanotubes are added. Experiments are carried out on a custom-built tribometer simulating a line contact between a polymer-coated cylindrical Al surface (shaft) and a flat uncoated Al plate as the counterface. The experimental parameters such as the normal load and the sliding speed are selected to simulate the boundary and mixed lubrication regimes for comparison purposes. Specific wear rates of the polymer films and bare Al surface under lubricated conditions are also calculated. Stribeck curves have been generated to evaluate the effectiveness of the pristine UHMWPE and the nanocomposite coatings in the various regimes of lubrication, especially the boundary lubrication regime. It is observed that the selected polymer coatings are effective in protecting the metallic surfaces without causing any observable oil contamination with wear debris.  相似文献   

9.
在不同工况下研究半金属基粉末摩擦片与淬火45#钢配副时,载荷和转速对其摩擦磨损性能的影响,并分析其磨损机制。结果表明,在油润滑和水润滑下,半金属基摩擦片高速下的磨损量要明显低于低速下的磨损量,而干摩擦下其高载高速下的磨损要高于高载低速时的磨损量。油润滑下随载荷的增大,半金属基摩擦片的摩擦因数逐渐升高;水润滑下随载荷的增大,高速时摩擦因数先增大后减小,低速时则逐渐降低;干摩擦下随载荷的增大,高速时摩擦因数呈现出先升高后降低再升高的趋势,低速时则先升高后降低。干摩擦时摩擦面十分粗糙,有比较明显的沟状磨痕和硬质颗粒脱落后残留的凹坑;而水润滑和油润滑时摩擦面较为光滑。  相似文献   

10.
The tribological behaviors of ultra-high molecular weight polyethylene (UHMWPE) microparticle-modified high-strength glass fabric/phenolic laminate composites sliding against stainless steel under water lubrication have been investigated. Results showed that the incorporation of UHMWPE microparticles, especially at the mass fraction of 5.0 %, improved the wear resistance of the laminate composite to a significant extent, because UHMWPE microparticle can effectively absorb and dissipate the friction energy through a plastic deformation during the formation of the regular ripple-like abrasion patterns on its worn surface. During the sliding process, after the phenolic resin was firstly worn off, UHMWPE microparticles with much better wear resistance were protruded from the worn surface of the laminate composite, leading to a fundamental change in the contact status of the matched surfaces from rigid resin and fibers/steel to flexible UHMWPE/steel. As a result, low and steady friction coefficient was obtained due to good adaptability of UHMWPE to water lubrication.  相似文献   

11.
用多功能SRV试验机评价了在干摩擦和油润滑条件下,试验参数对钢-钢摩擦副在点接触和线接触形式下的高温减摩性能的影响。结果表明,在试验范围内,随着试验负荷的增大,钢-钢摩擦副在干摩擦条件下线接触摩擦因数和点接触摩擦因数呈逐渐下降的趋势,这种下降趋势在线接触时尤为明显;但在油润滑条件下,试验负荷的增大对钢-钢摩擦副之间的线接触和点接触摩擦因数的影响不显著。在干摩擦条件下,不论是在点接触还是线接触形式下,试验速度对钢-钢摩擦副之间的高温点接触和线接触摩擦因数的影响并不显著;但在油润滑条件下,试验速度对钢-钢摩擦副的高温线接触和点接触摩擦因数的影响都比较显著,特别是在较高的试验速度时影响更为明显。  相似文献   

12.
多孔UHMWPE的制备与摩擦学性能研究   总被引:1,自引:0,他引:1  
用热压成型法制备多孔超高分子量聚乙烯(UHMWPE)和普通UHMWPE试样,在改制的摩擦磨损试验机上考察2种试样在水润滑和牛血清润滑下的摩擦磨损性能。结果表明:普通UHMWPE均处于边界润滑区域;多孔UH-MWPE在较低载荷下因可以获得额外的润滑而形成混合润滑,摩擦因数和磨损量较低,其磨损机制为轻微的擦伤磨损;随着载荷的增加,多孔UHMWPE试样的磨损量明显上升并高于同等条件下普通UHMWPE,呈现较严重的切削磨损;多孔UHMWPE只适合应用于低载工况下。  相似文献   

13.
针对航空发动机石墨密封常用的摩擦副浸渍磷酸盐石墨(M234Ao)和9Cr18Mo不锈钢材料,在UMT-TriboLab试验机上进行球-盘、销-盘接触摩擦试验,研究其低速轻载、高速重载工况以及干摩擦、油润滑下的摩擦磨损性能,利用接触式形貌仪、金相显微镜等对摩擦副表面进行观察分析,并分析其磨损机制。结果表明:在油润滑及面-面接触下的摩擦因数和磨损率明显低于干摩擦和点-面接触下;添加油介质可以降低界面摩擦剧烈程度,抑制金属氧化以及降低摩擦因数,特别是在高速重载工况下;M234Ao和9Cr18Mo配副间的磨损机制以磨粒磨损和黏着磨损为主,伴随有犁沟、微裂纹及擦伤现象。  相似文献   

14.
The friction and wear behaviors of polytetrafluoroethylene (PTFE), ultra-high molecular weight polyethylene (UHMWPE), and polyimide (PI) have been comparatively evaluated under dry sliding, blowing air, and simulated sand-dust conditions. The tribological tests were conducted on an improved block-on-ring test rig equipped with an attachment for simulating the sand-dust environment. The reason for the difference in the tribological behavior of these polymers under the three test conditions was also comparatively discussed, based on scanning electron microscopic examination of the worn polymer specimens and counterfaces. Under blowing air conditions, the decrease of the contact temperature produced by blowing air led to the increase in the shearing strength of the sliding surface when compared with dry sliding conditions and hence to cause an increase in the friction coefficient and a remarkable decrease in the wear rate of PTFE and UHMWPE. On the contrary, blowing air produced a decrease in the friction coefficient of PI because of the formation of transfer film on the counterfaces, and an increase in the wear rate, because the blowing air considerably promoted the transfer of PI onto the counterfaces when compared with dry sliding conditions. Both PTFE and UHMWPE registered the lowest wear rate under sand-dust conditions, owing to the tribolayer formation on the worn surfaces, while PI exhibited the highest wear rate because no tribolayer was formed during the abrasive wear process.  相似文献   

15.
以竹纤维为增强相,通过稀土化合物改性制备一种树脂基复合材料;采用环块式摩擦磨损实验,研究稀土化合物改性复合材料在油润滑状态下载荷、转速对试样摩擦学性能的影响,以及稀土化合物改性对复合材料试样摩擦学性能的影响;比较干摩擦状态和油润滑状态下复合材料的摩擦学性能,观察和分析试样磨损表面形貌,探讨其磨损机制。实验结果表明:油润滑条件下,稀土化合物改性复合材料的摩擦因数和磨损率都随着载荷的增大而增加;较高载荷下摩擦因数随着转速的增大先增加后减小,而磨损率则呈现逐步增加的趋势;稀土化合物的改性使竹纤维和基体界面结合更为紧密,提高摩擦因数的同时降低了磨损率;在油润滑作用下,试样磨损由干摩擦时的磨粒磨损和疲劳磨损转变成为轻微的疲劳磨损;在油润滑状态下,复合材料处于边界润滑状态,故摩擦因数和磨损率均低于干摩擦。  相似文献   

16.
The friction and wear behavior of ultra-high molecular weight polyethylene (UHMWPE) sliding against bearing steel (AISI 52100) in a ring-on-block contact mode under the lubrication of aqueous solution of 3.5% NaCl was evaluated. The worn polymer surfaces were analyzed by means of three dimensional profiling, atomic force microscopy, Polarized Raman microanalysis, field emission scanning electron microscopy, and nanoindentation testing. It was found that unusual wavelike abrasion patterns were formed on the worn surface of UHMWPE under properly selected sliding conditions. In the presence of plowing effect, the molecular chains of UHMWPE and short-rod like microcrystalline grains of abrasion pattern were both further oriented along the plowing direction and became tiny and dense owing to microstructure reconstruction. Resultant microstructurally reconstructed worn surface of UHMWPE had a higher nanoindentation hardness and modulus as well as increased wear resistance.  相似文献   

17.
Tribological characteristics of ultrahigh-molecular-weight polyethylene (UHMWPE)-based compositions with graphite and molybdenum disulfide are studied under conditions of dry friction, boundary lubrication, and abrasive wear. It is shown that, under dry sliding friction, the wear rate of UHMWPE-graphite and UHMWPE-MoS2 polymer compositions is halved as compared to that of pure UHMWP, while their mechanical characteristics change only slightly. Under the conditions of abrasive wear, the wear resistance of these composites increases by 1.3–1.5 times. Concentrations of the fillers, which are optimum for improving the wear resistance, are determined. The supramolecular structure and the topography of worn surfaces of the UHMWPE compositions with various concentrations of the fillers are examined. A comparative analysis of the wear resistance of the composites under conditions of dry friction and lubrication is carried out. Mechanisms of the wear of the UHMWPE-graphite and UHMWPE-MoS2 polymer compositions under conditions of dry sliding friction and abrasive wear are discussed.  相似文献   

18.
This is a comparative study between ultra-high molecular weight polyethylene (UHMWPE) reinforced with micro-zinc oxide (ZnO) and nano-ZnO under different filler loads. These composites were subjected to dry sliding wear test under abrasive conditions. The micro- and nano-ZnO/UHMWPE composites were prepared by using a hot compression mould. The wear and friction behaviours were monitored using a pin-on-disc (POD) test rig. The pin-shaped samples were slid against 400 grit SiC abrasive papers, which were pasted, on the stainless steel disc under dry sliding conditions. The worn surfaces and transfer film formed were observed under the scanning electron microscope (SEM). Experimental results showed that UHMWPE reinforced with micro- and nano-ZnO would improve the wear behaviour. The average coefficient of friction (COF) for both micro- and nano-ZnO/UHMWPE composites were comparable to pure UHMWPE. The weight loss due to wear for nano-ZnO/UHMWPE composites are lower compared to micro-ZnO/UHMWPE and pure UHMWPE. The optimum filler loading of nano-ZnO/UHMWPE composites is found to be at 10 wt%. The worn surface of ZnO/UHMWPE composites shows the wear mechanisms of abrasive and adhesive wear. Upon reinforcement with micro- and nano-ZnO, the abrasive and adhesive wear of worn surfaces transited from rough to smooth.  相似文献   

19.
润滑条件对纳米SiO2填充尼龙复合材料摩擦学性能的影响   总被引:1,自引:0,他引:1  
利用MM-200磨损实验机在干摩擦、水润滑和油润滑等条件下,研究了润滑条件对含量为10%的纳米SiO2填充尼龙1010复合材料与45^#钢对磨时的摩擦学性能的影响,并利用扫描电子显微镜对纳米SiO2-PA1010复合材料的磨损表面和磨损机理进行了观察和分析。结果表明水润滑时,纳米SiO2-PA1010复合材料的摩擦因数比在干摩擦时有一定程度的降低,但磨损量却比干摩擦时增加了很多;而在油润滑时,摩擦因数和磨损量均比干摩擦和水润滑时降低了许多;复合材料的磨损机制也随着润滑条件的不同发生了相应的变化。  相似文献   

20.
弹性金属塑料复合材料的摩擦磨损特性研究   总被引:1,自引:1,他引:1  
在MPX-2000摩擦磨损试验机上,用环盘摩擦副,结合扫描电镜分别评价了弹性金属塑料(EMP)复合材料与钢在油润滑和干摩擦条件下的摩擦磨损特性。结果表明:两种试验条件下,相同滑动速度的摩擦系数随载荷的升高而减小,当载荷为2000N,滑动速度小于3.52m/s时,摩擦系数基于趋于稳定,EMP磨损率随滑动速度和载荷的升高耐增加,但不同试验条件的增幅不高,油润滑下滑动速度小于3.52m/s和干摩擦条件下滑动速度小于1.96m/s时,EMP以微切削,塑性变形和梨沟磨损为主,并在摩擦副两表面形成转移物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号