首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 637 毫秒
1.
This paper presents a systematic methodology to analyze the shrinkage and warpage in an injection-molded part with a thin shell feature during the injection molding process. The systematic experimental design based on the response surface methodology (RSM) is applied to identify the effects of machining parameters on the performance of shrinkage and warpage. The experiment plan adopts the centered central composite design (CCD). The quadratic model of RSM associated sequential approximation optimization (SAO) method is used to find the optimum value of machining parameters. One real case study in the injection molding process of polycarbonate/acrylonitrile butadiene styrene (PC/ABS) cell phone shell has been performed to verify the proposed optimum procedure. The mold temperature (M T), packing time (P t), packing pressure (P P) and cooling time (C t) in the packing stage are considered as machining parameters. The results of analysis of variance (ANOVA) and conducting confirmation experiments demonstrate that the quadratic models of the shrinkage and warpage are fairly well fitted with the experimental values. The individual influences of all machining parameters on the shrinkage and warpage have been analyzed and predicted by the obtained mathematical models. For the manufacture of PC/ABS cell phone shell, the values of shrinkage and warpage present the reduction of 37.8 and 53.9%, respectively, using this optimal procedure.  相似文献   

2.
Cao  Yanli  Fan  Xiying  Guo  Yonghuan  Liu  Xin  Li  Chunxiao  Li  Lulu 《Journal of Mechanical Science and Technology》2022,36(3):1189-1196

Compared with ordinary injection-molded parts, the slender, cantilevered, and thin-walled plastic parts are harsh on the injection molding process conditions. For complexity and particularity, it is difficult to form such parts. It is also more likely to cause excessive warpage deformation, affecting the molding quality and performance. The automobile audio shell is a typical slender, cantilevered, thin-walled plastic part. When the mold structure and material are determined, optimizing its injection molding process is the most economical and effective method to manufacture the products with the optimum properties. In order to minimize the warpage deformation, the adaptive network based fuzzy inference system (ANFIS) and genetic algorithm (GA) were adopted to optimize the injection molding process parameters. In particular, considering the high-dimensional nonlinear relationship between the process parameters and the warpage, the ANFIS is constructed as the prediction model of the warpage. Then, the GA is used to globally optimize the prediction model to determine the optimal process parameters. The results show that the optimization method based on ANFIS-GA has a good performance. The warpage is reduced to 0.0925 mm while reduced by 88.25 %. The optimal injection molding process parameters are used for simulation and manufacture, verifying the effectiveness and reliability of the optimization method.

  相似文献   

3.
基于神经网络和遗传算法的薄壳件注塑成型工艺参数优化   总被引:1,自引:0,他引:1  
建立基于神经网络和遗传算法并结合正交试验的薄壳件注塑成型工艺参数优化系统.正交试验法用来设计神经网络的训练样本,人工神经网络有效创建翘曲预测模型;遗传算法完成对影响薄壳塑件翘曲变形的工艺参数(模具温度、注射温度、注射压力、保压时间、保压压力和冷却时间等)的优化,并计算出其优化值.按该参数进行试验,效果良好,可以有效地减小薄壳塑件翘曲变形,其试验数值与计算数值基本相符,说明所提出的方法是可行的.  相似文献   

4.
响应面法与遗传算法相结合的注塑工艺优化   总被引:1,自引:0,他引:1  
应用田口方法进行试验设计,应用计算机辅助工程技术对注塑成形过程进行了分析,建立了注塑成形工艺参数与翘曲度关系的代理模型——响应面模型,对模型进行了验证研究,将响应面法与遗传算法相结合进行了注塑工艺参数优化。结果表明,响应面模型是准确可靠的,将响应面法和遗传算法相结合,可有效提高运算速度和优化效率。  相似文献   

5.
Optimization of cold water temperature in forced draft cooling tower with various operating parameters has been considered in the present work. In this study, response surface method (RSM) and an artificial neural network (ANN) were developed to predict cold water temperature in forced draft cooling tower. In the development of predictive models, water flow, air flow, water temperature and packing height were considered as model variables. For this propose, an experiment based on statistical five-level four factorial design of experiments method was carried out in the forced draft cooling tower. Based on statistical analysis, packing height, air flow and water flow were high significant effects on cold water temperature, with very low probability values (< 0.0001). The optimum operating parameters were predicted using RSM, ANN model and confirmed through experiments. The result demonstrated that minimum cold water temperature was optioned from the ANN model compared with RSM.  相似文献   

6.
Bending is one of the processes frequently applied during manufacturing of automotive safety parts that are obtained by successive sequences of blanking and bending. This paper describes a 3D finite element model used for the prediction of punch load and the stress distribution during the wiping-die bending process. The numerical simulation has been modelled by means of elastic plastic theory coupled with Lemaître's damage approach. Numerical simulations were carried out by using the ABAQUS/Standard FE code, for a sufficient number of process parameters combinations, particularly the die radius and the gap between the punch and die. An algorithmic loop, programmed in the Script Language of ABAQUS, was developed in order to investigate the mechanical response of parts bent on a mechanical press for each combination of process parameters. The punch load and stress distribution can be predicted in view of optimising the values of the main parameters involved in the process. Finally, a response surface methodology (RSM) based on design of experiments (DOE) was used in order to minimise the maximum punch load during the bending operation. Numerical results showed the suitability of the proposed model for analysing the bending process. Associated plots are shown to be very efficient for a quick choice of the optimum values of the bending process parameters.  相似文献   

7.
翘曲变形是注塑件的主要缺陷,利用电器后盖对薄壁成型工艺进行研究。采用Moldflow软件对塑件成型过程进行数值模拟,研究了保压压力、塑件材料对注塑件翘曲变形的影响。对薄壁注塑件的数值仿真模拟结果进行统计分析,并且对影响注塑翘曲变形量的工艺参数进行综合分析,得到最优的工艺参数组合。研究结果表明:最佳的工艺参数组合可以使得塑件翘曲量变得最小。  相似文献   

8.
In this paper, an effective optimization method using the Kriging model is proposed to minimize the warpage in injection molding. The warpage deformations are nonlinear, implicit functions of the process conditions, which are typically evaluated by the solution of finite element (FE) equations, a complicated task which often involves huge computational effort. The Kriging model can build an approximate function relationship between warpage and the process conditions, replacing the expensive FE reanalysis of warpage in the optimization. In addition, a “space-filing” sampling strategy for the Kriging model, named rectangular grid, is modified. Moldflow Corporation’s Plastics Insight software is used to analyze the warpage deformations of the injection-molded parts. As an example, the warpage of a cellular phone cover is investigated, where the mold temperature, melt temperature, injection time, and packing pressure are regarded as the design variables. The result shows that the proposed optimization method can effectively decrease the warpage deformations of the cellular phone cover and that the injection time has the most important influence on warpage in the chosen range.  相似文献   

9.
This paper focuses on optimisation of process parameters of the turning operation, using artificial intelligence techniques such as support vector regression (SVR) and artificial neural networks (ANN) integrated with genetic algorithm (GA). The model is trained using the turning parameters as the input and corresponding surface roughness, tool wear and power required as the output. Data, obtained from conducting experiments is analysed using support vector machine (SVM) and artificial neural network. SVM, a nonlinear model, is learned by linear learning machine by mapping into high-dimensional kernel-induced feature space. The genetic algorithm is integrated with these to find the optimum from the response surface generated. The results are compared with those obtained by integrating GA with traditional models like response surface methodology (RSM) and regression analysis (RA). This paper illustrates the impact that techniques based on artificial intelligence have on optimising processes.  相似文献   

10.
张惠敏  陈连帅  李旭 《机械》2011,(2):73-76
在注塑成型大型薄壁塑料产品过程中,由于熔料流动路程长,流动阻力大,产品极易产生翘曲变形,从而影响到使用性能.应用Moldflow软件分析了影响产品翘曲变形的主要原因是收缩率不均引起.通过优化工艺参数,即优化保压曲线,减小了产品翘曲变形.方珐是将保压设置由恒压保压调整为先恒压再线性递减的两段保压,然后再多次调整保压曲线各...  相似文献   

11.
Flow forming is an advanced locally plastic deformation applied to manufacture seamless tubes with thin walls and high precision dimension. One of the important mechanical properties of flow-formed tubes is hardness. In this study, after preliminary experiments for definition of effective parameters, design of experiments (DOE) is utilized to determine the influence of the parameters such as rotational speed of mandrel, feed rate, and wall thickness reduction on the hardness of flow-formed AISI 321 steel tube. Under experimental results, a mathematical model comprising effective parameters is developed to predict the optimum hardness, using response surface methodology (RSM). RSM’s Box–Behnken design is employed to specify the optimum condition caused to a minimum hardness at high optimum confidence level. The analyzed model revealed that the hardness increases with increasing of the mandrel speed and the depth of cut, and it decreases with decreasing of the feed rate. The new point of view is related to the fact that the high level of thickness reduction covers the efficiency of mandrel speed.  相似文献   

12.
The evolving concept of minimum quantity of lubrication (MQL) in machining is considered as one of the solutions to reduce the amount of lubricant to address the environmental, economical and ecological issues. This paper investigates the influence of cutting speed, feed rate and different amount of MQL on machining performance during turning of brass using K10 cemented carbide tool. The experiments have been planned as per Taguchi's orthogonal array and the second order surface roughness model in terms of machining parameters was developed using response surface methodology (RSM). The parametric analysis has been carried out to analyze the interaction effects of process parameters on surface roughness. The optimization is then carried out with genetic algorithms (GA) using surface roughness model for the selection of optimal MQL and cutting conditions. The GA program gives the minimum values of surface roughness and the corresponding optimal machining parameters.  相似文献   

13.
In this study, an adaptive optimization method based on artificial neural network model is proposed to optimize the injection molding process. The optimization process aims at minimizing the warpage of the injection molding parts in which process parameters are design variables. Moldflow Plastic Insight software is used to analyze the warpage of the injection molding parts. The mold temperature, melt temperature, injection time, packing pressure, packing time, and cooling time are regarded as process parameters. A combination of artificial neural network and design of experiment (DOE) method is used to build an approximate function relationship between warpage and the process parameters, replacing the expensive simulation analysis in the optimization iterations. The adaptive process is implemented by expected improvement which is an infilling sampling criterion. Although the DOE size is small, this criterion can balance local and global search and tend to the global optimal solution. As examples, a cellular phone cover and a scanner are investigated. The results show that the proposed adaptive optimization method can effectively reduce the warpage of the injection molding parts.  相似文献   

14.
This paper focuses on the development of an effective methodology to determine the optimum welding conditions that maximize the strength of joints produced by ultrasonic welding using response surface methodology (RSM) coupled with genetic algorithm (GA). RSM is utilized to create an efficient analytical model for welding strength in terms of welding parameters namely pressure, weld time, and amplitude. Experiments were conducted as per central composite design of experiments for spot and seam welding of 0.3- and 0.4-mm-thick Al specimens. An effective second-order response surface model is developed utilizing experimental measurements. Response surface model is further interfaced with GA to optimize the welding conditions for desired weld strength. Optimum welding conditions produced from GA are verified with experimental results and are found to be in good agreement.  相似文献   

15.
In tube hydroforming, the loading path that is the relationship between axial feeding and internal fluid pressure is of important significance. Researchers have employed various optimization approaches to find an optimum loading path. In this research, a statistical method based on finite element analysis has been developed. An accurate FEA has been used to simulate the process and to find the response of the process to the loading. By performing an experimental test, the model is verified in comparison with the actual T part. The multilevel response surface method (MLRSM) has been used to model the responses from the finite element analysis. The behavior of the process can be predicted using the response surface methodology (RSM) model, and then, the obtained model is used to optimize the process. The optimum point in the RSM highly depends on the initial range of design variables. Thus, after finding the optimum point in each level, the ranges of variables are adjusted around the last optimum point. Then, the optimization process can be continued as a multilevel process. In the performed optimizations, the thickness variance has been considered as the objective function and the protrusion height as the constraint. The thickness variation based on the optimum loading path is highly improved, and it shows that multilevel RSM is very effective in improving the results.  相似文献   

16.
注射成型受众多因素影响,在制件结构和模具结构确定的条件下,通过合理的注射工艺参数,可消除或减少塑件成型中出现的缺陷。针对某企业在试生产一种储物箱箱盖时产生翘曲变形的问题,采用Taguchi试验方法,应用Moldflow对注射过程进行模拟,获得了塑件在熔料温度、模具温度、注射时间和保压压力四因素三水平下成型的翘曲变形量。采用极差分析,比较了不同工艺参数对翘曲变形量的影响程度,得到了优化的工艺参数组合。经试验验证,其效果良好,产品的翘曲变形得到了一定的改善。  相似文献   

17.
In this paper, the parameters optimization of plastic injection molding (PIM) process was obtained in systematic optimization methodologies by two stages. In the first stage, the parameters, such as melt temperature, injection velocity, packing pressure, packing time, and cooling time, were selected by simulation method in widely range. The simulation experiment was performed under Taguchi method, and the quality characteristics (product length and warpage) of PIM process were obtained by the computer aided engineering (CAE) method. Then, the Taguchi method was utilized for the simulation experiments and data analysis, followed by the S/N ratio method and ANOVA, which were used to identify the most significant process parameters for the initial optimal combinations. Therefore, the range of these parameters can be narrowed for the second stage by this analysis. The Taguchi orthogonal array table was also arranged in the second stage. And, the Taguchi method was utilized for the experiments and data analysis. The experimental data formed the basis for the RSM analysis via the multi regression models and combined with NSGS-II to determine the optimal process parameter combinations in compliance with multi-objective product quality characteristics and energy efficiency. The confirmation results show that the proposed model not only enhances the stability in the injection molding process, including the quality in product length deviation, but also reduces the product weight and energy consuming in the PIM process. It is an emerging trend that the multi-objective optimization of product length deviation and warpage, product weight, and energy efficiency should be emphasized for green manufacturing.  相似文献   

18.
通过响应面分析法(RSM)对超声振动辅助金刚石线锯切割SiC单晶体的工艺参数进行分析和优化。采用中心组合设计实验,考察线锯速度、工件进给速度、工件转速和超声波振幅这4个因素对SiC单晶片表面粗糙度值的影响,建立了SiC单晶片表面粗糙度的响应模型,进行响应面分析,采用满意度函数(DFM)确定了切割SiC单晶体的最佳工艺参数,验证试验表明该模型能实现相应的硬脆材料切割过程的表面粗糙度预测。  相似文献   

19.
This study analyzed variations of mechanical characteristics that depend on the injection molding techniques during the blending of short glass fiber and polytetrafluoroethylene reinforced polycarbonate composites. A hybrid method including back-propagation neural network (BPNN), genetic algorithm (GA), and response surface methodology (RSM) are proposed to determine an optimal parameter setting of the injection molding process. The specimens are prepared under different injection molding processing conditions based on a Taguchi orthogonal array table. The results of 18 experimental runs were utilized to train the BPNN predicting ultimate strength, flexural strength, and impact resistance. Simultaneously, the RSM and GA approaches were individually applied to search for an optimal setting. In addition, the analysis of variance was implemented to identify significant factors for the injection molding process parameters and the result of BPNN integrating GA was also compared with RSM approach. The results show that the RSM and BPNN/GA methods are both effective tools for the optimization of injection molding process parameters.  相似文献   

20.

The main objective of the present article is to solve the problems of poor molding quality, large warpage, inadequate cooling effect and unsuitable selection of process parameters, in the injection molding process for passenger vehicle front-end plastic wing plate. The thickness and parting surface of the vehicle front-end fender were determined, the injection mold and its cooling system were designed. The relevant process parameters, affecting the product molding quality, were tested, according to orthogonal experimental approach, while their influence on the warpage was obtained, by analyzing the data. Finally, the BP neural network of warpage model was established and globally optimized using genetic algorithm. The optimal parameter combination of the injection molding process was derived as: melt temperature 236 °C, mold temperature 51 °C, cooling time 32 s, packing pressure 97 MPa and packing time 16 s.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号