首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
一种并联机器人误差综合补偿方法   总被引:7,自引:0,他引:7  
针对并联机器人轨迹规划和轨迹跟踪过程中,同时存在机构误差引起的期望轨迹与理想轨迹之间的偏差和非线性摩擦、负载变化等扰动因素引起的动态误差,提出一种并联机器人误差综合补偿方法:在轨迹规划过程中,基于并联机器人位姿误差模型将位姿误差补偿转化为驱动杆参数组合优化问题,进而利用粒子群算法寻优驱动杆参数,修正并联机器人期望轨迹;在轨迹跟踪过程中,设计基于自适应迭代学习控制算法的动态误差补偿策略,实现对期望轨迹的有效跟踪。在Stewart平台下基于ADAMS和Matlab进行仿真试验,在轨迹规划和轨迹跟踪过程中,分别修正期望轨迹偏差并补偿轨迹跟踪动态误差,实现并联机器人误差综合补偿。进一步,基于混联机床进行工件加工试验,验证方法对于提高并联机器人工作精度的有效性。  相似文献   

2.
位姿精度是评价机器人性能好坏的一个重要指标,建立有效的补偿算法是提高机器人位姿精度的重要保证。 本文以 一种 2TPR&2TPS 并联机器人为研究对象,建立了基于正解的误差模型,根据该误差模型得出了动、静平台位置参数误差及 驱动杆零点长度误差与机器人末端位姿误差的关系,同时建立了基于逆解的补偿算法。 通过粒子群算法对误差函数的最小 值寻优,得到了机器人驱动杆补偿量和位姿补偿量,仿真得出该机器人的平均位置精度提升了 98. 148% ;将驱动杆补偿量与 理想位姿对应的驱动杆长叠加作为机器人的驱动杆输入量进行实验验证,实验得出机器人的平均位置精度提升了 87. 457% ,补偿效果显著。  相似文献   

3.
基于量子粒子群优化算法的机器人运动学标定方法   总被引:6,自引:0,他引:6  
基于量子粒子群优化算法,提出一种同样适用于串联机器人和并联机器人的运动学标定方法。利用闭环矢量链方法和Denavit-Hartenberg矩阵法,分别建立并联机器人和串联机器人的运动学误差模型,将运动学误差模型内的几何误差源作为相应的机构参数修正量。由于机器人运动学误差模型表现有较强的非线性,因此确定模型内的机构参数修正量为优化变量,将机器人运动学参数标定问题转化为非线性系统的优化问题。采用量子粒子群优化算法对优化问题进行求解,利用优化获得的参数修正量更新运动学模型,以达到提高机器人运动精度的目的。以五轴并联机床的平面约束机构为研究对象,通过试验验证该标定方法的标定效果,并与模糊插值标定方法进行比较分析,结果表明在较大的工作空间内基于量子粒子群优化的运动学标定方法更为有效。  相似文献   

4.
针对新型3T1R并联操作手2-RPaRSS存在运动副间隙引起的定位偏差,造成操作手的实际轨迹与理论轨迹不吻合的问题,提出了一种基于自适应混合粒子群优化(AHPSO)算法的轨迹修正方法。建立操作手包含的各类运动副误差模型,在模型中将间隙误差完全等效成杆长误差;根据逆运动学方程建立并联操作手2-RPaRSS的位姿误差模型,得到关于输入、输出的微分关系式,并引入驱动杆输入角补偿量;利用粒子群优化(PSO)算法对补偿量寻优,将间隙误差补偿问题转化为求适应度极小值问题;通过混合权值自适应调整、学习因子自适应调节、混沌扰动范围自适应调节策略改进了PSO算法,得到AHPSO算法。仿真结果表明AHPSO算法性能优良,具有更好的收敛性和稳定性,对并联操作手运动副间隙误差的补偿是一种有效方法,补偿后定位精度得到了明显改善。  相似文献   

5.
3-PRUR三平移并联机构机器人的精度分析   总被引:2,自引:0,他引:2  
为采取有效措施提高并联机构的输出精度,对3-PRUR三平移并联机器人机构的精度进行分析。根据并联机器人机构的结构综合理论,建立了该机构的运动学逆解模型;依据全微分理论建立误差模型以及误差求解算法,得到3-PRUR三平移并联机器人机构输出位姿误差与各原始误差源之间的映射关系;分析了该机型的精度误差值,研究了影响该并联机构机器人精度的因素,为实际误差的补偿与控制奠定了理论基础。  相似文献   

6.
针对4自由度2-RPaRSS并联机构,利用D-H变换矩阵法建立了机构运动学及单条支链的位姿误差模型,并由此得到了机构基于各运动副误差(制造误差、安装误差、磨损误差等)的动平台位姿误差模型;运用该误差模型对2-RPaRSS并联机构的进行了误差分析和计算,给出了机构驱动角对动平台位姿误差的影响情况;同时建立了单支链的误差辨识模型,并由NSGA2算法求得了各误差的近似最优解,通过误差补偿使并联机构的位姿精度得到明显提高。  相似文献   

7.
为了提高XYZ-3RPS六轴卧式混联机床的运动学精度,建立了3RPS并联机构的运动学参数误差模型。首先对3RPS并联机构的几何误差源进行了分析。然后基于闭环矢量微分法建立了3RPS并联机构包含铰点位置误差、转动副轴线方向误差、驱动支链零位杆长误差等27项结构参数误差对末端位姿误差的映射模型。最后设计了仿真实验,利用ADAMS的虚拟样机技术,获取机构实际末端位姿误差。通过与误差模型的结果对比,验证了所分析的27项结构参数误差设定值在(0.1~0.2)mm的范围内,误差模型的位置误差求解精度大于0.01mm,姿态误差求解精度大于0.01°。进一步的数值验证表明,误差模型的精度会随着结构参数误差值的减小而显著提高,为3RPS等少自由度并联机构的误差建模和运动学标定提供理论依据。  相似文献   

8.
大型刚体调姿系统最优时间轨迹规划   总被引:16,自引:0,他引:16  
研究基于三坐标支撑柱的大型刚体位姿调整系统。系统可等效为6自由度冗余驱动并联机构,动平台初始位姿和目标位姿已知,而运动时间和路径不确定。为了使支撑柱运动平稳并提高调姿精度,在考虑工程实际中的关节驱动力约束和驱动速度约束的基础上,提出一种最优时间轨迹规划算法。首先运用冗余驱动并联机构的分析方法建立该系统的运动学和动力学模型,并通过Moore-Penrose广义逆矩阵得到关节驱动力的最小范数解,然后以时间为参数,运用5次多项式拟合调姿物体的位姿变化轨迹,再通过二分法求解出满足关节空间约束的最优调姿时间,从而生成相应的关节运动轨迹。仿真结果表明算法只需经过较少次迭代就能获得理想的调姿运动轨迹。总之,该轨迹规划方法是有效的。  相似文献   

9.
以三臂空间机器人为研究对象,针对经历奇异位形时出现的位姿误差问题,提出一种基于位姿误差反馈的轨迹规划算法。根据系统一般运动学方程并结合动量守恒方程建立系统运动学模型,利用位姿期望指令得到误差运动方程。以关节角速度为控制量,设计了基于位姿误差反馈的控制率,使闭环系统的跟踪误差按指数速度收敛。该方法能够减小机器人奇异点邻域内的位姿跟踪误差,且在离开奇异区域后能完全消除误差。仿真结果证明了该方法的有效性。  相似文献   

10.
研究了环境温度对交叉杆并联机床加工精度的影响。采用闭环矢量法建立了该并联机床的运动学反解方程,并基于该方程通过优化算法建立了该机床的位姿误差模型,分析并比较了由环境温度变化引起的机床加工误差。研究表明,环境温度变化产生的驱动杆杆长误差相对较大,使得并联机床加工精度降低,由环境温度引起的机床加工误差在误差分析与补偿过程中是不可以被忽略的。为了提高并联机床的加工精度,必须对其工作环境温度进行控制或进行温度补偿。  相似文献   

11.
基于机器人直纹面概念和人工生命算法,提出一种并联机器人位姿轨迹最优规划方法.应用计算几何中的三维直纹面生成原理,对机器人末端执行器的位置和姿态进行统一描述.考虑到机器人姿态直纹面面积及其变化率能够反映和评价机器人的运动学和动力学性能,通过求解等效角位移矢量在空间的运动轨迹形成的三维直纹曲面面积及其变化率,并将其作为泛函的泛函极值,同时考虑运动时机器人的灵活度,建立机器人位置和姿态轨迹优化的数学模型.采用人工生命优化算法对代表并联机器人位姿轨迹的高阶参数化空间曲线的参数进行优选,通过优化轨迹直纹曲面面积及其变化率和机器人的灵巧度,使并联机器人具有良好的运动学和动力学性能.最后以一三自由度球面并联机器人轨迹规划实例,验证所提出方法的可行性.  相似文献   

12.
为了完成对悬锤工件表面毛刺的打磨任务,提出了并联打磨机构的轨迹规划与插补算法。首先,基于一种新型三自由度并联打磨机构的运动学逆解,即如何控制支链驱动关节来实现期望的运动轨迹,进而确定了动平台几何中心点按预期轨迹运动时应在滑块驱动关节上设定的运动驱动函数规律。其次,借助Pro/E创建该机构的装配模型,通过ADAMS虚拟样机技术验证了轨迹规划的可行性、正确性。  相似文献   

13.
工业机器人定位误差在线自适应补偿   总被引:1,自引:0,他引:1  
受工业机器人本体结构几何及非几何误差因素的影响,机器人执行末端的实际运动轨迹与其理论规划轨迹往往不一致,这严重限制了机器人在加工领域的拓展应用。另外,通过研究发现机器人除在工作空间上定位误差等级存在差异分布外,在服役时间上随着机器人工作性能的退化也会显著恶化其定位精度。为解决该问题,提出了一种基于定长记忆窗增量学习的机器人定位误差在线自适应补偿方法。在该方法中,首先定量分析机器人定位误差与位姿的相关关系,将工作空间划分为多个位姿区块并创建校准样本库,建立了位姿映射模型的自适应优化机制以克服空间中误差等级差异分布的问题;然后设计了定长记忆窗增量学习算法,克服神经网络模型的灾难性遗忘缺陷,并平衡了在线模式下建立机器人新、旧位姿数据映射关系的精度和效率,解决了机器人性能退化加剧定位误差影响位姿映射模型适用性的问题,从而确保算法的补偿精度稳定在目标精度水平线以上;最后,利用St?ubli机器人和UR机器人对所提方法进行了精度在线补偿实验验证。实验结果表明该方法可将St?ubli机器人的定位误差从0.85 mm降至0.13 mm,将UR机器人的定位误差从2.11 mm降至0.17 mm,明显提高...  相似文献   

14.
并联机器人是一种具有高载荷自重比的封闭式运动结构,针对并联机器人运动控制和NURBS轨迹问题进行了深入的研究,首先从并联机器人的逆运动学问题进行了解析方法的求解。其次,针对正运动学(FKP)在数学上是难以解决问题,提出了一种多层感知器进行反向传播学习的神经网络进行实时求解。再次,开发了基于NURBS的通用插补器,它可以处理任何类型的几何图形使得机器人运动轨迹平滑。最后利用实验验证了运动学和NURBS曲线求解并联机器人模型的正确性。该策略在少数迭代和很少执行时间内,位置和方向参数的精度分别接近0.01mm和0.01°,验证了算法的有效性和正确性。  相似文献   

15.
This paper presents the kinematic calibration of a four degrees-of-freedom (DOF) hybrid machine tool based on a novel planar 3-DOFs parallel mechanism and a long movement of the worktable. Closed-form solutions are developed for both the inverse and direct kinematics about the parallel mechanism. The error model is built and the mechanism accuracy is investigated. Two types of kinematic calibration method are proposed by a simple measurement device. The first type of calibration method is based on estimation error, and can easy improve the machine tool accuracy quickly by estimating the error trends. The second type of kinematic calibration method is based on local measurement information, which includes the position errors and does not include the pose errors of the machine tool. The calibration tests showed the effectiveness of the calibration methods, which can be useful for the similar types of parallel machine tool.  相似文献   

16.
基于标定和关节空间插值的工业机器人轨迹误差补偿   总被引:3,自引:0,他引:3  
轨迹精度是工业机器人重要的动态性能,目前工业机器人的轨迹精度远低于定位精度,提出一种基于机器人运动学标定和关节空间插值误差补偿的方法来提高机器人轨迹精度。基于MD-H方法建立机器人的运动学模型,在此基础上运用机器人微分运动学理论建立末端位置误差模型和轨迹误差模型。为克服最小二乘法等传统方法在数据噪声较大且不符合高斯分布时收敛慢甚至发散的问题,提出一种基于扩展卡尔曼滤波算法的机器人运动学参数辨识方法,实现运动学参数辨识的快速收敛。经过分析发现机器人误差在关节空间具有连续性的特点,为此提出一种关节空间插值误差补偿方法,建立网格形式的误差补偿数据库,并利用关节空间距离权重函数和已知的网格顶点误差计算各控制点的关节转角误差。通过试验对所提出的参数辨识和关节空间误差补偿方法进行了验证,试验结果表明:经过运动学参数辨识和补偿后机器人的绝对定位精度由1.039 mm提高到0.226 mm,轨迹精度由2.532 mm提高到1.873 mm,应用关节空间插值误差补偿后机器人的轨迹精度进一步提高到1.464 mm。  相似文献   

17.
黄刚 《仪器仪表学报》2015,36(11):2538-2547
提出一种循迹机器人控制系统,通过实时修正机器人坐标与理想运动轨迹之间的偏移,实现机器人快速、有效的循迹。首先,采用粒子群优化算法规划理想运动轨迹;其次,根据正交落地码盘与陀螺仪实时获取机器人坐标及运动轨迹,经与线性化的理想运动轨迹比对,确定偏移量及方向;最后,将偏移量修正转化为机器人运动速度控制,从而实现了高精度闭环运动控制。实验结果表明,基于该控制系统搭建的机器人平台,线性化的理想轨迹和实际轨迹比对的最大偏差值为50.0 mm,在此偏差值内,实时修正偏移量,机器人能够自动回到线性化的理想轨迹上运行,且运行平稳、舒展,完全保证了机器人所要求完成的终点任务,与现有循迹机器人控制方法相比,提出的循迹机器人控制系统实现了较高精度的循迹与定位。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号