首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
合理的表面织构可有效改善摩擦副界面间的摩擦状态。为研究纳米流体与表面微织构耦合作用对硬质合金刀具材料摩擦性能的影响,采用“两步法”将纳米Fe3O4颗粒添加到水基切削液基础液,制备出质量分数为0.5%的Fe3O4纳米流体,并利用激光微加工技术在光滑的YG6X硬质合金样件表面制备出不同尺寸参数的沟槽型与凹坑型表面微织构。分析纳米流体与表面微织构耦合作用下硬质合金样件的摩擦磨损性能,整理摩擦系数、样件表面磨损形貌、磨球磨损率等数据发现,纳米流体能够有效改善基础液的润滑性能,在一定尺寸形状的织构样件相互作用下表现出优异的抗磨减摩性能,并且揭示了相应的减摩抗磨机理。  相似文献   

2.
倪侃  周元凯  左雪 《润滑与密封》2024,49(2):123-130
为了提高巴氏合金在油润滑条件下的摩擦学性能,在巴氏合金表面加工凹坑微织构并利用光固化填充方法填充六方氮化硼(h-BN)固体润滑剂,制备出h-BN与表面微织构相结合的复合润滑结构。研究复合润滑结构在油润滑条件下的摩擦学性能及其减摩润滑机制。结果表明:复合润滑结构的摩擦学性能远高于未织构面和纯织构面;当凹坑微织构直径较小时,织构密度为10%~20%时,复合润滑结构摩擦因数较小,而凹坑直径较大时,随着织构密度的增加,复合润滑结构摩擦因数逐渐减小;当织构密度小于20%时,凹坑直径较小的复合润滑结构摩擦因数小,当织构密度达到30%时,随着凹坑直径的增加,复合润滑结构摩擦因数减小。复合润滑结构能够改善巴氏合金表面摩擦学性能,是因为h-BN固体润滑剂的释放在巴氏合金表面形成了固体润滑薄膜,避免了润滑油膜较薄处的巴氏合金表面直接与45钢表面接触,且释放h-BN固体润滑剂后的微织构凹坑可以起到收集磨粒,储存润滑油的作用。  相似文献   

3.
为了研究表面微凹坑造型对化工机械设备中轴承合金润滑摩擦性能的影响,利用UMT-2型多功能摩擦磨损试验机,对不同工艺参数表面微凹坑轴承合金进行油润滑条件下摩擦磨损试验。研究了微凹坑面积密度、深度对摩擦因数的影响规律,同时探讨了工况条件对摩擦性能的影响。试验结果表明:微凹坑面积密度和微凹坑深度对摩擦性能的影响均存在最优值,微凹坑面积密度为10%,深度为25μm时,表面微凹坑造型减摩效果最佳;微凹坑面积密度、深度不变时,表面微凹坑造型试样摩擦因数随加载载荷增大而增加,说明高载荷工况下利用微凹坑造型改善耐磨性能效果不明显。磨痕形貌分析表明,低载荷工况下,合金表面微凹坑造型抗磨损效果明显。  相似文献   

4.
在球盘式摩擦磨损试验机上考察了有机物修饰的纳米铜颗粒作为50CC润滑油添加剂的摩擦学性能;采用SEM和EDS分析了磨损表面形貌和表面膜元素组成。探讨了纳米铜颗粒的摩擦学作用机制:结果表明:有机物修饰的纳米铜颗粒作为添加剂能显著改善50CC润滑油的抗磨减摩性能,含0.05%纳米铜油样润滑下的摩擦因数与磨损量同基础油润滑下相比分别降低了27.6%与60%。分析后认为,纳米铜颗粒通过对摩擦表面进行修复及在摩擦表面成膜两种作用有效地改善了摩擦磨损性能。  相似文献   

5.
为改善铝合金的摩擦学性能,运用有限元方法对单一方形凹坑、条形凹槽、方形凹坑和条形凹槽组合3种不同形貌织构摩擦副间润滑油膜承载能力进行仿真分析,并探究不同织构尺寸对油膜承载能力的影响。仿真结果表明:方形凹坑和条形凹槽组合织构润滑油膜承载能力最佳。采用脉冲Nd:YAG激光器在铝合金试件表面加工出具有规则形貌的方形凹坑和条形凹槽组合的织构阵列,借助CFT-I型高速往复摩擦磨损试验机进行摩擦试验,研究织构几何尺寸对摩擦副接触面间摩擦学性能的影响规律,并利用超景深显微系统对试件磨损表面的形貌进行观测。试验结果表明:组合织构化表面的平均摩擦因数与无织构表面相比明显减小,且波动幅度较小;当织构尺寸为80μm时,织构表面的摩擦因数最小,且试验得到的基体表面磨痕深度随织构尺寸的变化规律,与仿真计算得到的润滑油膜升力系数的变化规律相吻合,为微织构参数设计提供了一定的理论依据。  相似文献   

6.
新型硼氮型润滑油添加剂的合成及摩擦学性能   总被引:1,自引:0,他引:1  
以植物油为原料合成了一种新型硼氮型润滑油添加剂,采用摩擦磨损试验机考察了它在加氢基础油和成品油中的摩擦学性能,结果表明此添加剂具有良好的抗磨减摩效果.用扫描电子显微镜和X射线光电子能谱仪观察分析了磨痕表面的形貌及元素,发现磨损表面含有大量的硼元素,表明在摩擦过程中,通过物理吸附和化学反应在摩擦表面生成了含硼润滑膜,起减摩和抗磨作用.  相似文献   

7.
复合工艺制备的表面微凹坑织构的摩擦性能研究   总被引:2,自引:0,他引:2  
在构建的激光电化学复合微加工系统上,采用皮秒脉冲激光辐照与电解刻蚀复合加工方法在7075铝合金表面制备出不同尺寸的阵列凹坑微织构。采用共聚焦显微镜观测复合加工织构试样表面形貌,采用MFT-5000型RTEC摩擦磨损试验机研究润滑条件下凹坑织构的摩擦学性能,并探讨直径、深度、面积密度对减摩性能的影响。结果表明:复合加工工艺制备的表面微织构具有良好的表面形貌;润滑条件下材料表面的凹坑型织构能显著改善其摩擦学性能,相比光滑表面最高可降低摩擦因数30%;在实验参数范围内,凹坑的直径与面积密度对材料表面摩擦性能影响较大,凹坑深度对摩擦性能影响较小。  相似文献   

8.
采用YLP-F20激光打标器制备了不同参数的凹坑微织构,并用MMW-1型立式万能摩擦磨损试验仪分析了凹坑微织构尺寸、润滑条件和微织构面积占比及微织构分布形式等试验参数对4Cr13不锈钢/皮质骨摩擦副的摩擦性能影响。结果表明:合理的凹坑微织构在有无润滑条件下都具有减摩效果,在润滑条件下减摩效果更好,同时能有效降低摩擦区温度;在有无润滑条件下,凹坑微织构的面积占比都与摩擦副的摩擦性能有很大关系,凹坑面积占比越大,摩擦副的摩擦系数越低,摩擦性能越好。  相似文献   

9.
添加纳米磁性微粒的润滑油摩擦学行为研究   总被引:1,自引:0,他引:1  
冯雪君  杨志伊 《润滑与密封》2007,32(3):122-124,127
用化学方法制备纳米MnZnFe2O4磁性微粒,在四球摩擦磨损试验机和立式万能摩擦磨损试验机上考察了MnZnFe2O4纳米磁性微粒作为润滑油添加剂的抗磨减摩性能及对磨损表面的修复作用,并用扫描电子显微镜观察分析了磨斑表面形貌。实验表明,MnZnFe2O4纳米微粒添加剂可以显著提高基础油的承载能力,减小磨斑直径;磁性颗粒有利于加强吸附在摩擦副表面上形成物理吸附膜,并在摩擦表面形成自修复膜,对磨损表面具有一定的修复作用。  相似文献   

10.
坡缕石载铜复合纳米润滑添加剂的制备及摩擦学性能研究   总被引:1,自引:0,他引:1  
使用化学还原法制备坡缕石载铜复合纳米颗粒,以铸铁HT200作为摩擦副,采用MMU-10G摩擦磨损试验机研究该纳米颗粒作为润滑添加剂的摩擦学行为,使用EPMA-1600电子探针、金相显微镜、Genesis能谱仪进行试样磨损面形貌观察和组成元素分析。实验结果表明:该纳米复合颗粒作为润滑添加剂具有优异的减摩效果和良好的抗磨性能,与基础油150N相比,平均摩擦因数下降66.2%,对应的摩擦副试件磨损失重减少80.9%,在试件表面生成由纳米坡缕石和纳米铜共同组成的自修复膜。  相似文献   

11.
根据St9ber法制备5种不同粒径的有机-无机二氧化硅微球;采用扫描电子显微镜对微球的表面形貌进行表征分析;在四球摩擦磨损实验机上考察微球作为添加剂对润滑油摩擦磨损性能的影响,采用扫描电子显微镜分析试验钢球磨斑的表面形貌,利用能谱仪检测磨斑表面化学元素的组成,并讨论有机-无机二氧化硅微球的减摩抗磨机制。结果表明,在一定添加范围内,纳米级别的二氧化硅微球可以改善润滑油的摩擦磨损性能。有机-无机二氧化硅微球在钢球表面起填埋和抛光作用,有效地抑制了摩擦表面的黏着磨损和接触疲劳。  相似文献   

12.
分别采集阿拉善地区的青海云杉和双鸭山地区的青仟云杉,提取叶片表面蜡质并用气质联用(GCMS)对提取的云杉表面蜡质进行成分分析。利用MFT-4000摩擦磨损试验机,以合成酯作基础油,云杉蜡质作为添加剂,研究其在钢-钢和钢-铝摩擦副下的润滑性能,考察云杉蜡质成分作为绿色润滑油添加剂的可能性。用光学显微镜观察钢块和铝块表面磨痕形貌,用飞行质谱仪(SIMS)对磨痕表面成分进行分析。结果表明:两种云杉表面蜡质作为添加剂时均能够起到良好的减摩抗磨作用,其润滑机理是蜡质成分中的极性物质与金属表面分子形成吸附膜或反应膜,从而起到减摩和抗磨作用。  相似文献   

13.
提出了动态固体膜润滑的概念,合成了烷氧基硼酸锌,评价了其作润滑油添加剂的摩擦学性能,采用改进的环-块摩擦磨损试验机利用电阻法测定了摩擦副之间的润滑状态,利用扫描电子显微镜(SEM)观察了磨斑形貌。实验结果表明:当负荷低于40 N、摩擦速度高于1.28 m/s时,电阻测定表明摩擦副之间被添加剂(烷氧基硼酸锌)产生的半固体膜所隔开,处于动态固体润滑膜润滑状态,并可实现零磨损。SEM观察到的磨斑表面形貌进一步证实了动态固体润滑膜的存在。该添加剂表现出了一定的抗磨减摩性能。  相似文献   

14.
机械球磨和化学合成法制备的矿物纳米颗粒在化学组成、粒径分布和颗粒形状等方面存在显著不同,为研究2种方法制备的纳米颗粒对抗磨减摩性能的影响,采用环块式摩擦磨损试验机对比分析不同方法制备的纳米蛇纹石颗粒与纳米高岭土颗粒的摩擦学性能。试验结果表明:粒径为200~800 nm的合成纳米蛇纹石的摩擦因数和磨损量最低,球磨高岭土的摩擦因数和磨损量最大;合成纳米蛇纹石颗粒和有机钼减摩剂(MoDTC)复配能够进一步提高润滑性能,在110~130 ℃温度下,相比纯合成纳米蛇纹石颗粒,复配润滑油的摩擦因数降低约52%,相比MoDTC,复配润滑油磨痕宽度减少约13%;150 ℃试验温度下,合成蛇纹石、球磨蛇纹石、合成高岭土与MoDTC复配促进摩擦表面MoS2的生成,进一步降低摩擦因数;合成纳米颗粒形状圆润,没有尖锐棱角,对摩擦表面犁削作用小,相比球磨颗粒具有更好的抗磨减摩效果。  相似文献   

15.
纳米陶瓷润滑油添加剂润滑机制研究   总被引:1,自引:0,他引:1  
研究了纳米陶瓷润滑油添加剂的润滑机制.采用四球试验机考察了纳米陶瓷润滑油的抗磨性能和极压性能,利用NT场致发射扫描式电子显微镜、高分辨率扫描电子显微镜、X射线光电子能谱仪,观察了磨损表面的纳米粒子形貌,分析了磨损表面的形貌及表面元素成分.结果表明,纳米陶瓷润滑油润滑时,摩擦表面的磨斑很光滑,磨斑表面有Si3N4存在;纳米陶瓷添加剂具有很好的抗磨和极压性能;纳米陶瓷粒子具有"滚珠效应".  相似文献   

16.
采用四球摩擦磨损试验机研究纳米碳酸钙作为复合钛基脂添加剂的摩擦磨损性能,利用X射线光电子能谱仪分析试验后钢球磨斑表面主要元素的化学状态,用扫描电子显微镜观察钢球的磨斑表面形貌。结果表明:纳米碳酸钙作为复合钛基脂添加剂具有明显的减摩抗磨效果;其中纳米碳酸钙质量分数为时3%复合钛基脂具有佳的减摩抗磨效果,与纯钛基脂相比,可使平均摩擦因数降低14.9 %,磨斑直径降低35.1%。在添加纳米碳酸钙的复合钛基脂润滑下,钢球磨斑表面形成了由纳米碳酸钙分解生成的CaO、钛基脂分解生成的TiO2,以及Fe2O3、FeO等无机化合物成分组成的多孔状保护膜,这层保护膜阻止了摩擦表面的直接接触,起到了有效的减摩抗磨效果。  相似文献   

17.
赵修臣  刘颖  王富耻 《润滑与密封》2005,(2):103-104,121
利用化学共沉淀法制备了平均粒径为10nm、油酸表面修饰的Fe3O4粒子,并对其作为润滑油添加剂的摩擦学性能进行了研究。试验结果表明,添加油酸修饰的纳米Fe3O4粒子的润滑油表现出了较好的抗磨减摩性能,但是,纳米粒子的添加量有一最佳值。与基础油相比,添加纳米Fe3O4粒子润滑油的摩擦因数最大降低了26%,磨损量降低了28%。在摩擦磨损过程中,添加纳米Fe3O4粒子润滑油的摩擦力矩的变化表现出了时间效应。添加纳米Fe3O4粒子润滑油摩擦磨损后的磨痕表面比基础油摩擦磨损后的磨痕表面光滑,可以推测,纳米Fe3O4粒子对摩擦表面的抛光作用提高了润滑油的摩擦学性能。  相似文献   

18.
碳纳米管添加剂摩擦学性能研究及机制探讨   总被引:3,自引:0,他引:3  
运用四球摩擦磨损试验机,考察了碳纳米管作为某商品润滑油添加剂的摩擦磨损性能,采用光学显微镜对磨斑直径进行测量评定,用扫描电子显微镜对磨斑的表面形貌进行观察分析,并对碳纳米管的抗磨与润滑机制进行探讨。结果表明:碳纳米管作为润滑油添加剂表现出优良的减摩抗磨性能,在质量分数为0.012 5%~0.050%时,润滑油的抗磨性能显著提高,摩擦因数减小最大达28%,磨斑直径减小达30%;进一步实验研究表明碳纳米管添加剂对润滑油的抗磨性能作用在低载荷下更加显著。  相似文献   

19.
利用化学共沉淀法制备了平均粒径为59nm、采用硅烷偶联剂表面修饰的纳米Fe3O4粒子,并对其作为润滑油添加剂的摩擦学性能进行了研究。试验结果表明,添加硅烷偶联剂修饰的纳米Fe3O4粒子的润滑油表现出较好的抗磨减摩效果,能有效提高润滑油的抗磨减摩性能以及承载能力,当纳米Fe3O4的质量分数在1‰~3‰时产生的抗磨减摩效果较好。与空白20#润滑油相比,添加质量分数3‰纳米Fe3O4粒子的润滑油的摩擦因数平均降低了8%,磨损量不仅没有增加,反而出现了负磨损现象,且添加纳米Fe3O4粒子的润滑油摩擦磨损后的磨痕较浅。  相似文献   

20.
采用从电镀污泥中分离的一种厌氧杆菌制备FeS纳米微粒;通过X射线衍射(XRD)、扫描电子显微镜(SEM)对其成分、形态及粒径进行表征;采用面-面接触形式在MM-W1立式万能摩擦磨损试验机上研究纳米FeS颗粒作为润滑油添加剂在10W-40发动机油中的减摩性能;基于SEM和二次离子质谱(SIMS)对磨损表面的形貌及成分分析,讨论纳米FeS颗粒作为润滑油添加剂的减摩机制。结果表明:微生物法制备的非定型结构的FeS球状颗粒直径在50~100nm之间;添加纳米FeS可使10W-40发动机油的摩擦因数下降43.7%~77.5%。推测是由于摩擦过程中纳米FeS吸附于摩擦副表面阻碍摩擦副的直接接触,并且形成具有持续减摩作用的减摩层。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号