首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63135篇
  免费   6650篇
  国内免费   3482篇
电工技术   3833篇
技术理论   4篇
综合类   4612篇
化学工业   10228篇
金属工艺   3679篇
机械仪表   4085篇
建筑科学   5060篇
矿业工程   1889篇
能源动力   1746篇
轻工业   5003篇
水利工程   1420篇
石油天然气   3258篇
武器工业   575篇
无线电   7622篇
一般工业技术   7555篇
冶金工业   2844篇
原子能技术   1000篇
自动化技术   8854篇
  2024年   343篇
  2023年   1107篇
  2022年   1974篇
  2021年   2652篇
  2020年   2164篇
  2019年   1847篇
  2018年   1999篇
  2017年   2217篇
  2016年   2026篇
  2015年   2818篇
  2014年   3478篇
  2013年   4179篇
  2012年   4492篇
  2011年   4384篇
  2010年   4067篇
  2009年   3970篇
  2008年   3722篇
  2007年   3675篇
  2006年   3498篇
  2005年   2833篇
  2004年   2121篇
  2003年   1976篇
  2002年   2072篇
  2001年   1883篇
  2000年   1338篇
  1999年   1225篇
  1998年   860篇
  1997年   762篇
  1996年   727篇
  1995年   585篇
  1994年   496篇
  1993年   323篇
  1992年   295篇
  1991年   204篇
  1990年   159篇
  1989年   147篇
  1988年   106篇
  1987年   78篇
  1986年   65篇
  1985年   42篇
  1984年   34篇
  1983年   30篇
  1982年   25篇
  1981年   26篇
  1980年   23篇
  1979年   17篇
  1977年   13篇
  1976年   24篇
  1974年   12篇
  1959年   12篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
In this work, the composition-dependent point defect types and formation energies of RE2Hf2O7 (RE = La, Ce, Pr, Nd, Pm, Sm, Eu and Gd) as well as the oxygen diffusion behavior are systematically investigated by first-principles calculations. The possible defect reactions and dominant defect complexes under stoichiometric and non-stoichiometric conditions are revealed. It is found that O Frenkel pairs are the predominant defect in stoichiometric pyrochlore hafnates. Hf-RE cation anti-site defects, accompanied by RE vacancies and/or oxygen interstitials, are stable in the non-stoichiometric case of HfO2 excess. On the other hand, RE-Hf anti-site defects together with oxygen vacancies and/or RE interstitials are preferable in the case of RE2O3 excess. The energy barriers for the migration along the VO48f - VO48f pathway of pyrochlore hafnates were calculated to be between 0.81 eV and 0.89 eV. Based on these results, a defect engineering strategy is proposed and the pyrochlore hafnates investigated here are predicted to exhibit potential oxygen ionic conductivity.  相似文献   
2.
International Journal of Speech Technology - With the development of multimedia technology and network technology applications, it is possible to implement online teaching systems in schools. This...  相似文献   
3.
Femtosecond (fs) lasers have been proved to be reliable tools for high-precision and high-quality micromachining of ceramic materials. Nevertheless, fs laser processing using a single-mode beam with a Gaussian intensity distribution is difficult to obtain large-area flat and uniform processed surfaces. In this study, we utilize a customized diffractive optical element (DOE) to redistribute the laser pulse energy from Gaussian to square-shaped Flat-Top profile to realize centimeter-scale low-damage micromachining on single-crystal 4H–SiC substrates. We systematically investigated the effects of processing parameters on the changes in surface morphology and composition, and an optimal processing strategy was provided. Mechanisms of the formation of surface nanoparticles and the removal of surface micro-burrs were discussed. We also examined the distribution of subsurface defects caused by fs laser processing by removing a thin surface layer with a certain depth through chemical mechanical polishing (CMP). Our results show that laser-induced periodic surface structures (LIPSSs) covered by fine SiO2 nanoparticles form on the fs laser-processed areas. Under optimal parameters, the redeposition of SiO2 nanoparticles can be minimized, and the surface roughness Sa of processed areas reaches 120 ± 8 nm after the removal of a 10 μm thick surface layer. After the laser processing, micro-burrs on original surfaces are effectively removed, and thus the average profile roughness Rz of 2 mm long surface profiles decreases from 920 ± 120 nm to 286 ± 90 nm. No visible micro-pits can be found after removing ~1 μm thick surface layer from the laser-processed substrates.  相似文献   
4.
Narrow linewidth light source is a prerequisite for high-performance coherent optical communication and sensing.Waveguide-based external cavity narrow linewidth semiconductor lasers(WEC-NLSLs)have become a competitive and attractive candidate for many coherent applications due to their small size,volume,low energy consumption,low cost and the ability to integrate with other optical components.In this paper,we present an overview of WEC-NLSLs from their required technologies to the state-of-the-art progress.Moreover,we highlight the common problems occurring to current WEC-NLSLs and show the possible approaches to resolving the issues.Finally,we present the possible development directions for the next phase and hope this review will be beneficial to the advancements of WEC-NLSLs.  相似文献   
5.
Fire spread and growth on real‐scale four cushion mock‐ups of residential upholstered furniture (RUF) were investigated with the goal of identifying whether changes in five classes of materials (barrier, flexible polyurethane foam, polyester fiber wrap, upholstery fabric, and sewing thread), referred to as factors, resulted in statistically significant changes in burning behavior. A fractional factorial experimental design plus practical considerations yielded a test matrix with 20 material combinations. Experiments were repeated a minimum of two times. Measurements included fire spread rates derived from video recordings and heat release rates (HRRs). A total of 13 experimental parameters (3 based on the videos and 10 on the HRR results), referred to as responses, characterized the measurements. Statistical analyses based on Main Effects Plots (main effects) and Block Plots (main effects and factor interactions) were used. The results showed that three of the factors resulted in statistically significant effects on varying numbers of the 13 responses. The Barrier and Fabric factors had the strongest main effects with roughly comparable magnitudes. Foam was statistically significant for fewer of the responses and its overall strength was weaker than for Barrier and Fabric. No statistically significant main effects were identified for Wrap or Thread. Multiple two‐term interactions between factors were identified as being statistically significant. The Barrier*Fabric interaction resulted in the highest number of and strongest statistically significant effects. The existence of two‐term interactions means that it will be necessary to consider their effects in approaches designed to predict the burning behavior of RUF.  相似文献   
6.
Utilizing inner-crystal piezoelectric polarization charges to control carrier transport across a metal-semiconductor or semiconductor–semiconductor interface, piezotronic effect has great potential applications in smart micro/nano-electromechanical system (MEMS/NEMS), human-machine interfacing, and nanorobotics. However, current research on piezotronics has mainly focused on systems with only one or rather limited interfaces. Here, the statistical piezotronic effect is reported in ZnO bulk composited of nanoplatelets, of which the strain/stress-induced piezo-potential at the crystals’ interfaces can effectively gate the electrical transport of ZnO bulk. It is a statistical phenomenon of piezotronic modification of large numbers of interfaces, and the crystal orientation of inner ZnO nanoplatelets strongly influence the transport property of ZnO bulk. With optimum preferred orientation of ZnO nanoplatelets, the bulk exhibits an increased conductivity with decreasing stress at a high pressure range of 200–400 MPa, which has not been observed previously in bulk. A maximum sensitivity of 1.149 µS m−1 MPa−1 and a corresponding gauge factor of 467–589 have been achieved. As a statistical phenomenon of many piezotronic interfaces modulation, the proposed statistical piezotronic effect extends the connotation of piezotronics and promotes its practical applications in intelligent sensing.  相似文献   
7.
With co-substitution of (Li0.5Sm0.5) at A site and W at B site, the electrical properties of modified Ca0.92(Li0.5Sm0.5)0.08Bi2Nb2-xWxO9 [(CLS)BN-xW, x = 0, 0.015 and 0.03] piezoceramics with ultrahigh Curie temperature (TC) of > 930 °C were enhanced dramatically. The increased resistivity induced by the co-substitution ensure them to be polarized under an enough high field. Combined with the increase of spontaneous ferroelectric polarization (PS), the significant enhancements in the piezoelectric, dielectric and ferroelectric properties can be obtained in the composition x = 0.015. Furthermore, the piezoelectric activity (d33) and bulk resistivity (ρb) of (CLS)BN-0.015 W can be further enhanced at an appropriate sintering temperature. This optimum composition sintered at 1170 °C shows ultrahigh TC of ~948 °C, d33 of ~17.3 pC/N and ρb of ~6.9 MΩ cm at 600 °C, which are comparable to those of the reported high-temperature Aurivillius piezoceramics with TC > 850 °C.  相似文献   
8.

Sampling or task jitter affects the performance of digital control systems but realistic simulation of this effect has not been possible to date. Our previous work has developed a novel method to simulate sampling jitter in MATLAB/Simulink simulation software where the jitter is generated randomly. What has been missing is a way to capture sampling jitter from a target platform and then feed this timing information into the simulation. This paper presents a low-cost and novel solution to these problems. The method uses an Arduino board to capture task jitter from two different hardware platforms with multiple stressing conditions. Then the recorded performance data is used to drive realistic simulations of a control system. Measurement shows that the task jitter data does not follow any specific random distribution such as Gaussian or Uniform. Furthermore, very occasional timing patterns, which may not be picked up while testing a real system, can result in extreme controller responses. This novel method allows comparisons of different platforms and reduces the effort required to choose the most appropriate platform for full implementation.

  相似文献   
9.
10.
Ce:Y3Al5O12 transparent ceramics (TCs) with appropriate emission light proportion and high thermal stability are significant to construct white light emitting diode devices with excellent chromaticity parameters. In this work, strategies of controlling crystal-field splitting around Ce3+ ion and doping orange-red emitting ion, were adopted to fabricate Ce:(Y,Tb)3(Al,Mn)5O12 TCs via vacuum sintering technique. Notably, 85.4 % of the room-temperature luminescence intensity of the TC was retained at 150 °C, and the color rendering index was as high as 79.8. Furthermore, a 12 nm red shift and a 16.2 % increase of full width at half maximum were achieved owing to the synergistic effects of Tb3+ and Mn2+ ions. By combining TCs with a 460 nm blue chip, a warm white light with a low correlated color temperature of 4155 K was acquired. Meanwhile, the action mechanism of Tb3+ ion and the energy transfer between Ce3+ and Mn2+ ions were verified in prepared TCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号