首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   135946篇
  免费   14918篇
  国内免费   8935篇
电工技术   10603篇
技术理论   10篇
综合类   12004篇
化学工业   19774篇
金属工艺   7605篇
机械仪表   8678篇
建筑科学   10962篇
矿业工程   4278篇
能源动力   3605篇
轻工业   13525篇
水利工程   3573篇
石油天然气   6107篇
武器工业   1727篇
无线电   16089篇
一般工业技术   13223篇
冶金工业   5162篇
原子能技术   1701篇
自动化技术   21173篇
  2024年   833篇
  2023年   2452篇
  2022年   5080篇
  2021年   6721篇
  2020年   5126篇
  2019年   3822篇
  2018年   4193篇
  2017年   4847篇
  2016年   4321篇
  2015年   6497篇
  2014年   8062篇
  2013年   9433篇
  2012年   11039篇
  2011年   11674篇
  2010年   10499篇
  2009年   9778篇
  2008年   9616篇
  2007年   8732篇
  2006年   7947篇
  2005年   6488篇
  2004年   4444篇
  2003年   3327篇
  2002年   3273篇
  2001年   2788篇
  2000年   2109篇
  1999年   1693篇
  1998年   947篇
  1997年   804篇
  1996年   746篇
  1995年   582篇
  1994年   419篇
  1993年   331篇
  1992年   307篇
  1991年   187篇
  1990年   152篇
  1989年   112篇
  1988年   85篇
  1987年   61篇
  1986年   55篇
  1985年   21篇
  1984年   19篇
  1983年   19篇
  1982年   26篇
  1981年   24篇
  1980年   36篇
  1979年   15篇
  1978年   5篇
  1973年   3篇
  1959年   16篇
  1951年   19篇
排序方式: 共有10000条查询结果,搜索用时 17 毫秒
1.
Mobile Networks and Applications - Inverse kinematics is an important basic theory in walking control of biped robot. This study focuses on the parameter setting using the improved algorithm in...  相似文献   
2.
纳米药物非临床药代动力学的研究策略及关注要点   总被引:1,自引:0,他引:1  
随着纳米技术的迅速发展,纳米药物的研发已成为目前药物创新的发展方向之一。纳米药物具有基于纳米结构的尺度效应,其药代动力学特征与普通药物相比存在明显差异,其药代动力学研究与普通药物相比也有其特殊性。本文着重探讨纳米药物的非临床药代动力学的研究策略及关注要点,包括受试物、体内/外试验、生物样本分析、数据评价分析等,期望为研发者提供参考。  相似文献   
3.
4.
Hydraulic fracturing with slickwater is a field-proven stimulation technology used in tight reservoirs. Because of the high pumping rate associated with slickwater fracturing, drag reduction (DR) is critical in minimizing pressure drop and the success of oilfield operations. In this paper, a new type of drag reducer (SPR) was synthesized with acrylamide and 12-allyloxydodecyl acid sodium, and its drag reduction performance was evaluated. The results showed that the new drag reducer features low molecular weight, fast-dissolving rate and low interfacial tension. The algorithm of estimating the drag reduction rate of non-Newtonian fluid SPR was proposed and validated. Empirical or semianalytical models for estimating the friction ratio (σ) or friction factor (λ or f) were used to simulate the turbulence behavior of the SPR drag reducer under different Reynolds numbers (Re). The modified Virk's correlation could accurately model the turbulent behavior of the SPR drag reducer. A unified calculation formula was established in this study for different pipe diameters.  相似文献   
5.
针对煤矸石粉替代率50%、聚酯纤维掺量0.4%的沥青混合料,开展盐冻耦合作用(NaCl溶液质量分数为0%、7.0%、13.0%、26.5%,冻融循环次数为0、2、4、6、8)下的半圆弯曲(SCB)试验,分析了盐冻耦合作用对SCB试件内部损伤劣化过程的影响.结果表明:NaCl溶液质量分数为13.0%、冻融循环为8次时,盐冻耦合作用对沥青混合料的侵蚀破坏作用最强,试件内部损伤最严重;在煤矸石粉与矿粉质量比为1∶1、聚酯纤维掺量为0.4%的条件下,沥青混合料能够形成高黏性、致密、厚实的沥青膜以及由纤维形成的三维网状结构,从而显著降低盐冻侵蚀对沥青混合料的损伤.通过Poly2D模型对SCB试件的极限拉应力损伤量进行拟合,拟合系数为0.944.  相似文献   
6.
Composites based on hafnium carbide and reinforced with continuous naked carbon fiber with and without PyC interface were prepared at low temperature by precursor infiltration and pyrolysis and chemical vapor deposition method. The microstructure, mechanical property, cyclic ablation and fiber bundle push-in tests of the composites were investigated. The results show that after three times ablation cycles, the bending strength of samples without PyC interface decreased by 63.6 %; the bending strength of samples with PyC interface only decreased by 37.8 %. The force displacement curve of the samples with PyC interface presented a well pseudoplastic deformation state. The mechanical behavior difference of two kinds of composites was due to crucial function of PyC interface phase including protection of fiber and weakening of fiber/matrix interface.  相似文献   
7.
Synthetic active matters are perfect model systems for non-equilibrium thermodynamics and of great potential for novel biomedical and environmental applications. However, most applications are limited by the complicated and low-yield preparation, while a scalable synthesis for highly functional microswimmers is highly desired. In this paper, an all-solution synthesis method is developed where the gold-loaded titania-silica nanotree can be produced as a multi-functional self-propulsion microswimmer. By applying light, heat, and electric field, the Janus nanotree demonstrated multi-mode self-propulsion, including photochemical self-electrophoresis by UV and visible light radiation, thermophoresis by near-infrared light radiation, and induced-charge electrophoresis under AC electric field. Due to the scalable synthesis, the Janus nanotree is further demonstrated as a high-efficiency, low-cost, active adsorbent for water decontamination, where the toxic mercury ions can be reclaimed with enhanced efficiency.  相似文献   
8.
In this work, density functional theory (DFT) calculations were used to investigate the mechanism of carbon corrosion on nitrogen-doped carbon support. Free energy diagrams were generated based on three proposed reaction pathways to evaluate corrosion mechanisms. The most energetically preferred mechanism on nitrogen-doped carbon was determined. The results show that the step of water dissociation to form #OH was the rate-determining step for gra-G-1N (graphene doped with graphitic N) and pyrr-G-1N (graphene doped with pyrrolic N). As for graphene doped with pyridinic N, the step of C#OC#O formation was critical. It was found that the control of nitrogen concentration was necessary for precisely designing optimized carbon materials. Abundance of nitrogen moieties aggravated the carbon corrosion. When the high potential was applied, specific types of graphitic N and pyridinic N were found to be favorable carbon modifications to improve carbon corrosion resistance. Moreover, the solvent effect was also investigated. The results provide theoretical insights and design guidelines to improve corrosion resistance in carbon support through material modification by inhibiting the adsorption of surface oxides (OH, O, and OOH).  相似文献   
9.
The purpose of the current work was to research the effect of alkali metal oxide on the structure, thermal properties, viscosity and chemical stability in the glass system (R2O–CaO–B2O3–SiO2) systematically. Because the glass would emulsify when Li2O was added to the glass batch, this article did not discuss Li2O. The results showed that when the amount of Na2O was less than 4 mol.%, there was a higher interconnectivity of borate and silicate sub-networks in glass, as more mixed Si–O–B bonds were present in glass. The glass samples exhibited excellent thermal properties and chemical stabilities. As the amount of Na2O exceeded 4 mol.%, the interconnectivity of borate and silicate sub-networks was weakened. The thermal properties and chemical stabilities of the glass samples were reduced. The connectivity of the silicate sub-network was weakened slightly as the Na/K ratio varied, and the coefficient of thermal expansion (CTE) of the glass samples gradually increased, and the resistance to thermal shock (RTS) value gradually decreased. Moreover, the viscosity of the glass samples decreased with the ratio of Na/Si and Na/K increased.  相似文献   
10.
The in situ axial X-ray diffraction patterns of four ceramic powder samples (MgO, Al2O3, AlN, and cBN) that were compressed in a diamond anvil cell under uniaxial non-hydrostatic conditions were recorded. The microscopic deviatoric stress as a function of the pressure was determined from the X-ray diffraction peak broadening analysis: the curves increased approximately linearly with the pressure at the initial compression stage and then levelled off under further compression. Pressure-induced transparency was observed in all of the samples under compression, and the pressure at the turning point on the curves of the microscopic deviatoric stress versus pressure corresponded to the pressure at which the samples became transparent. Analysis of the microstructural features of the pressure-induced transparent samples indicated that the compression caused the grains to fracture, and the broken grains bonded with each other. We demonstrated that the ceramics’ pressure-induced transparency was a process during which the grains were squeezed and broken, the pores were close between the grains, and the broken grains were re-bonded under compression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号