首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   6篇
综合类   5篇
化学工业   4篇
建筑科学   6篇
水利工程   1篇
  2023年   3篇
  2021年   1篇
  2017年   1篇
  2015年   1篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2004年   1篇
排序方式: 共有16条查询结果,搜索用时 390 毫秒
1.
畜禽养殖废水有机物水质水量变化大,有机物、氨氮与磷的浓度较高,直接排放会严重危害环境。通过构建厌氧-好氧序批式反应器(SBR)处理预酸化畜禽养殖废水,分析了不同进水负荷条件下反应器对污染物的去除性能和微生物群落结构的变化规律。结果表明:SBR反应器对高负荷进水中TN、PO3-4—P和COD的平均去除率可分别达到64.5%、97.5%和94.5%。反应器出现NH+4—N和NO2—N亚硝酸同时积累的短程硝化现象,这可能与高进水负荷对氨氧化菌和亚硝酸盐氧化菌的活性和种群的影响有关。与乙酸盐相比,以丙酸盐作碳源时污泥的强化生物除磷活性更高。随着进水负荷的增大,聚糖菌(GAOs)的相对丰度明显升高。四联球状菌(Tetrasphaera)为反应器中始终占优势的聚磷菌(PAOs),对反应器除磷性能有重要贡献。在高有机负荷条件下,SBR内PAOs与GAOs之间不存在明显的底物竞争关系,系统脱氮除磷性能未受影响。  相似文献   
2.
为了研究聚磷菌的生长机理和菌种特性,在序批式SBR反应器中,以普通活性污泥富集聚磷菌,在厌氧/好氧条件下,以乙酸钠/丙酸交替作为碳源富集高浓度聚磷菌,采用FISH结合DGGE的分子生物学手段研究了富集周期内系统微生物种群结构的变化.DGGE结果表明:试验前后微生物种群结构发生了明显改变,其菌群的多样性指数、丰富度指数和条带数具有一致的变化趋势,在运行第2阶段末期达到最高值,进入稳定运行阶段,这3项指数下降,优势度上升.聚类分析表明,稳定运行期间种群群落相似度较高.FISH结果表明:在启动和负荷提高阶段聚磷菌与聚糖菌呈现共同增长的趋势,在第71天分别达到41%和39%;在稳定运行阶段聚磷菌成为明显的优势菌属,占总菌群的89%,反应器内仅存在少量聚糖菌.  相似文献   
3.
对强化生物除磷机理与工艺认识误区的剖析   总被引:9,自引:4,他引:5  
结合国际上生物除磷机理与工艺的最新进展,分析了目前我国在污水生物除磷工艺研发和运行中存在的一些认识误区。基于成熟的生物除磷生化代谢机理,指出反硝化除磷菌(DPB)是一种广泛存在于一些强化生物除磷(EBPR)工艺中的聚磷菌(PAOs),无需特殊培养;对于市政污水,EBPR工艺中出现的聚糖原茵(GAOs)一般不会成为聚磷茵(PAOs/DPB)的竞争者而严重影响系统的除磷功能。针对强化生物除磷工艺的认识误区,指出污泥龄(SRT)是设计的关键参数,在最不利细菌生长的冬季,控制SRT〉12 d即可使EBPR保持较好的硝化与脱氮除磷效果;在污水生物处理除磷工艺选择上,“厌氧池+氧化沟”只是污水处理升级而演变出的一种被动型工艺,并非最佳的EBPR工艺选择;此外倒置A^2/O工艺由于忽略了聚磷菌所需的进水碳源及DPB的作用,并不一定能改进EBPR的生物除磷效果。  相似文献   
4.
采用沸石-塑料混合填料为载体构建固定床生物膜反应器,周期性进水(厌氧)-排水(好氧)富集培养聚糖菌(GAOs),结合沸石颗粒吸附作用实现厌氧条件下COD和氨氮的去除。在进水COD和氨氮浓度分别为(508±19)mg/L和(40±3)mg/L、HRT为12 h(厌氧6 h、好氧6 h)的运行条件下,单级反应器COD、氨氮和总氮去除率分别为89.2%、57.5%、57.5%。双级反应器条件下,COD、氨氮和总氮的平均去除率分别为93.1%、84.9%、70.8%。缩短50% HRT(厌氧/缺氧3 h+好氧3 h)后,双级反应器总氮去除率提升到81.7%。16S rRNA高通量测序结果显示,聚糖菌Candidatus Competibacter的相对丰度在塑料填料表面上升了30.43倍(0.46%→14%),而在沸石颗粒表面上升了14.35倍(0.46%→6.60%),表明塑料填料表面更有利于聚糖菌的富集。  相似文献   
5.
Lower temperature or polyphosphate limitation is the favorable condition to enrich polyphosphate-accumulating organisms (PAOs) or glycogen accumulating organisms (GAOs) in biological phosphorus removal...  相似文献   
6.
贾淑媛  王淑莹  赵骥  李夕耀  张琼  彭永臻 《化工学报》2017,68(12):4731-4738
在序批式(sequencing batch reactor,SBR)反应器中,通过分段厌氧-好氧(厌氧后排水)运行方式,在以葡萄糖为碳源、P/C比小于2/100的条件下,成功实现了聚糖菌(glycogen accumulating organisms,GAOs)的驯化富集,厌氧段磷酸盐的释放量(phosphorus release amounts,PRA)稳定在1.0 mg·L-1以内,胞内糖原(glycogen,gly)含量是初始阶段的1.2倍。驯化后的GAOs分别以NO2--N、NO3--N为电子受体经厌氧-缺氧运行方式,可进行内源反硝化反应过程。GAOs在内源反硝化过程中依次利用胞内的聚β-羟基戊酸酯(poly-β-hydroxyvalerate,PHV)、聚β-羟基丁酸酯(poly-β-hydroxyvalerate,PHB)和gly作为内碳源。在22℃时,反硝化聚糖菌(denitrifying glycogen accumulating organisms,DGAOs)以NO2--N、NO3--N为电子受体平均比内源反硝化速率分别为0.067 g N·(g VSS)-1·d-1、0.023 g N·(g VSS)-1·d-1,常温短程内源反硝化速率约是全程内源反硝化速率的3倍。  相似文献   
7.
通过调节进水ρ(P)ρ/(C)的不同水平(2.9/100、1.4/100、0.57/100、0.29/100、1.4/100和2.9/100),考察了A/O-SBR系统强化生物除磷效果的动态变化;同时利用PCR-DGGE分子生物学技术,研究了聚磷菌和聚糖菌种群的竞争与演变.结果表明,当ρ(P)ρ/(C)逐渐降低时(2.9/100→1.4/100→0.57/100→0.29/100),吸收单位碳源的厌氧释磷量逐渐降低,而胞内糖原量逐渐升高.相应的DGGE图谱显示,微生物类群在ρ(P)/ρ(C)降低过程由11 OTUs升高到14 OTUs,最后降至7 OTUs;结合生化指标判断,系统优势菌种呈现的是从聚磷菌占优势、聚糖菌聚磷菌共存到聚糖菌占优势的动态变化.随后,提高进水ρ(P)ρ/(C)值从0.29/100到1.4/100再到2.9/100,污泥吸收单位碳源的厌氧释磷量逐渐升高,而胞内糖原量逐渐降低.这说明当聚糖菌占优势以后,通过调节ρ(P)ρ/(C)可重新培养获得聚磷菌优势系统,但DGGE图谱也显示,此时的聚磷菌优势种群较聚糖菌系统的优势种群已有较大变化,且与先前聚磷菌系统的优势种群也不尽相同.  相似文献   
8.
为了考察单级SBR处理实际中期垃圾渗滤液深度脱氮的可行性,采用单级SBR在“厌氧/好氧/缺氧”(AOA)运行方式下处理实际中期垃圾渗滤液。试验发现,厌氧/好氧/缺氧交替运行下驯化的微生物能在厌氧段消耗胞内糖原,并将水中部分溶解性有机物以聚羟基脂肪酸酯(PHAs)形式储存;在好氧段微生物消耗胞内PHAs,转化为胞内糖原,氨氧化的同时也伴随着同步硝化反硝化脱氮;好氧段氨氧化结束后贮存的碳源(PHAs和糖原)能为后置缺氧反硝化提供碳源。经长期试验研究,进水COD、NH4+-N、TN浓度分别为6430~9372 mg·L-1、1025.6~1327 mg·L-1、1345.7~1853.9 mg·L-1,出水COD、NH4+-N、TN浓度能达到525~943 mg·L-1、1.2~4.2 mg·L-1、18.9~38.9 mg·L-1。在未投加外碳源的情况下,SBR法AOA运行方式下能够实现中期垃圾渗滤液的深度脱氮,出水TN<40 mg·L-1。其中,好氧段(DO<1 mg·L-1)通过同步硝化反硝化去除TN占总去除量的1/3左右;缺氧后置反硝化去除的TN占总去除量的2/3左右。  相似文献   
9.
巩有奎  罗佩云  孙洪伟 《化工学报》2021,72(8):4381-4390
以厌氧-限氧方式运行序批式生物反应器(SBR),采用逐步降低进水碳氮比(C/N)方式驯化聚磷菌(PAOs)和聚糖菌(GAOs),启动了低C/N生活污水同步脱氮除磷过程(SNDPR),并考察了SNDPR内PAOs、GAOs间竞争关系及系统脱氮除磷性能过程N2O释放特性。结果表明,C/N=7.0,SBR限氧段脱氮和除磷效率分别为83.5%和90%以上,N2O产量为0.54 mg/L;C/N=3.0~3.5,脱氮和除磷效率分别降至60.1%和80.5%,N2O产量达1.09 mg/L。SBR内不同反应阶段内源物质变化均表现出PAOs-GAOs共存特性。高C/N有利于微生物合成聚-β-羟基烷酸酯(PHA)并促进N2O还原。C/N降低,SBR内污泥内源物质转化倾向于富集GAOs的降解特性。氨氧化菌(AOB)好氧反硝化过程及GAOs以PHA作为电子供体的内源反硝化过程促进了N2O的释放。随C/N降低,SBR内污泥平均胞外聚合物(EPS)由43.4 mg/g VSS增至50.5 mg/g VSS,污泥容积指数(SVI)由99 ml/g增至127 ml/g。疏松型EPS(LB-EPS)内,蛋白质(PN)与多糖(PS)之比(PN/PS)随C/N增加而降低,污泥亲水性增加,不利于污泥脱水。  相似文献   
10.
为降低污水处理能耗,利用沸石颗粒充当生物填料构建固定床生物膜反应器,通过序批式进水—排水的方式使反应器内填料表面生物膜处于交替厌氧—好氧环境,避免了传统污水处理曝气工艺所需的大量能耗,并能有效去除COD和脱氮。该工艺主要原理:在厌氧阶段(进水),污水与生物膜和沸石颗粒接触,聚糖菌(GAOs)将有机碳源转化为胞内聚羟基烷酸(PHAs),沸石吸附污水中的NH4+-N。在好氧阶段(排水),通过聚糖菌、硝化菌和反硝化菌的共同作用,将沸石吸附的NH4+-N转化为氮气,使得生物膜和沸石颗粒得以再生。沸石颗粒固定床生物膜反应器以活性污泥为接种污泥,在序批式厌氧—好氧交替运行模式下,2周内成功启动;长期运行中污水COD、NH4+-N和TN去除率分别为87%、83%和83%,且出水中未检出硝态氮;长期运行后,反应器内生物膜菌群以ThaueraCandidatus competitivebacterNitrospira细菌属为主,它们是去除COD和脱氮的关键微生物。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号