首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47734篇
  免费   5507篇
  国内免费   3258篇
电工技术   4044篇
技术理论   1篇
综合类   2998篇
化学工业   8844篇
金属工艺   4174篇
机械仪表   1888篇
建筑科学   2603篇
矿业工程   1259篇
能源动力   1558篇
轻工业   1720篇
水利工程   358篇
石油天然气   712篇
武器工业   811篇
无线电   6351篇
一般工业技术   14729篇
冶金工业   2300篇
原子能技术   702篇
自动化技术   1447篇
  2024年   171篇
  2023年   1109篇
  2022年   1192篇
  2021年   1773篇
  2020年   2031篇
  2019年   1722篇
  2018年   1525篇
  2017年   1774篇
  2016年   1766篇
  2015年   1854篇
  2014年   2696篇
  2013年   2871篇
  2012年   3233篇
  2011年   4078篇
  2010年   2946篇
  2009年   3107篇
  2008年   2774篇
  2007年   3247篇
  2006年   2860篇
  2005年   2571篇
  2004年   2047篇
  2003年   1845篇
  2002年   1460篇
  2001年   1082篇
  2000年   1009篇
  1999年   677篇
  1998年   593篇
  1997年   443篇
  1996年   376篇
  1995年   297篇
  1994年   284篇
  1993年   196篇
  1992年   170篇
  1991年   152篇
  1990年   147篇
  1989年   124篇
  1988年   59篇
  1987年   36篇
  1986年   33篇
  1985年   26篇
  1984年   36篇
  1983年   26篇
  1982年   29篇
  1981年   9篇
  1980年   10篇
  1979年   3篇
  1976年   3篇
  1959年   5篇
  1955年   5篇
  1951年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(16):23341-23347
In recent years, the rapid development of Li(NixCoyMn1-x-y)O2 (LNCM) materials for application in ternary lithium-ion batteries has led to an increased demand for refractory kiln saggars in industries. However, saggars used for firing ternary Li-ion battery cathode materials are often subjected to severe corrosion and spalling. To investigate the damage mechanism of the saggar materials, non-contact corrosion experiments were designed to study the effects of the precursor additions, calcination temperature, and number of calcinations during the interaction between mullite saggar and LNCM materials. The phase composition and microstructure of the mullite saggar specimens before and after corrosion were characterized using X-ray diffraction and scanning electron microscopy, respectively, to obtain a comprehensive understanding of the causes of the deterioration of mullite saggar materials during corrosion.  相似文献   
2.
本文主要总结了新冠疫情期间作者的电磁场理论课程在线教学经验。对比分析了录播和直播的优缺点后,选择录播教学方式。基于超星网络教学平台,展示了录播网络教学的具体措施,包括网上答疑和学习效果检查以及在线批改作业等。给出了网络教学可以为线下教学继续使用的方法和手段,为疫情结束后的正常教学提供了新的网络教学补充措施。  相似文献   
3.
为了探索三维石墨烯-碳纳米管(G-CNTs)/水泥净浆的压敏性能,采用四电极法研究了荷载作用下GCNTs/水泥净浆的电阻率变化,并分析不同G-CNTs掺量、加载幅度、加载速度以及恒定荷载对电阻率变化的影响。研究表明:随着G-CNTs掺量的增加,电阻率呈先减小后稳定的变化趋势,在G-CNTs掺量由0.2wt%增加至1.6wt%时,电阻率下降51.8%;电阻率与温度呈负相关;G-CNTs掺量高于0.8wt%时可以显著提高水泥净浆的压敏性能,且电阻率变化率与应力应变有明显的对应关系,1.2wt%G-CNTs掺量下试件的应力灵敏系数和应变灵敏系数分别为2.3%/MPa和291;G-CNTs/水泥净浆电阻率变化率幅值随着加载幅度增大而相应增加,其电阻率变化率曲线在不同加载速度以及恒定荷载作用下均与应力-应变曲线一一对应,具有良好的压敏特性。  相似文献   
4.
《Ceramics International》2022,48(21):31995-32000
Among the existing material family of the correlated oxides, the rare earth nickelates (ReNiO3) exhibit broadly adjustable metal to insulator transition (MIT) properties that enables correlated electronic applications, such as thermistors, thermochromics, and logical devices. Nevertheless, how to accurately control the critical temperature (TMIT) of ReNiO3 via the co-occupation of the rare-earth elements is yet worthy to be further explored. Herein, we demonstrate the non-linearity in adjusting the TMIT of ReNiO3 towards lower temperatures via introducing Pr co-occupation within ReNiO3 (e.g., PrxNd1-xNiO3 and PrxSm1-xNiO3) as synthesized by KCl molten-salt assisted high oxygen pressure reaction approach. Although the TMIT is effectively reduced via Pr substitution, it does not strictly follow a linear relationship, in particular, when there is large difference in the ionic radius of the co-occupation rare-earth elements. Furthermore, the most significant deviation in TMIT from the expected linear relationship appears at an equal co-occupation ratio of the two different rare-earth elements, while the abruption in the variation of resistivity across TMIT is also reduced. The present work highlights the importance to use adjacent rare-earth elements with co-occupation ratio away from 1:1 for achieving more linear adjustment in designing the metal to insulator transition properties for ReNiO3.  相似文献   
5.
With the continuous development of bionics, such as, geckos and virginia creeper with both superhydrophobic and super-adhesive, the surface wetting and super-adhesive properties of various porous materials have attracted extensive attention of the scientific and medical communities. Here, the honeycomb polyurethane (PU) porous films with strong adhesion were successfully prepared by microphase separation method and the effects of growth parameters on their microstructure and adhesive strength to ice were investigated. It was found that a high relative humidity (e.g., 100%) and a low solution concentration (e.g., 2%) facilitated the formation of ordered honeycomb PU porous films, and as-prepared PU pores with average pore diameter as small as 5 μm are better ordered and more uniform than these in related documents. Although the contact angle of water droplets on the surface of PU porous films increased from the premodification value of 85–130° to more than 160° after surface modification with polydopamine (PDA), the corresponding rolling angle remained approximately constant (180°), indicating that the surface of PU porous films has strong adhesion similar to geckos and virginia creeper. Furthermore, at lower temperature, the PU porous films exhibited the high adhesive strength of 142.13 kPa on ice, which was strongly dependent on the porous microstructures and surface compositions. The improved adhesive behavior to ice of honeycomb PU porous films modified with PDA provides new strategies for surface modification of materials and potential applications in medical domain.  相似文献   
6.
Shape memory materials (SMMs) in 3D printing (3DP) technology garnered much attention due to their ability to respond to external stimuli, which direct this technology toward an emerging area of research, “4D printing (4DP) technology.” In contrast to classical 3D printed objects, the fourth dimension, time, allows printed objects to undergo significant changes in shape, size, or color when subjected to external stimuli. Highly precise and calibrated 4D materials, which can perform together to achieve robust 4D objects, are in great demand in various fields such as military applications, space suits, robotic systems, apparel, healthcare, sports, etc. This review, for the first time, to the best of the authors’ knowledge, focuses on recent advances in SMMs (e.g., polymers, metals, etc.) based wearable smart textiles and fashion goods. This review integrates the basic overview of 3DP technology, fabrication methods, the transition of 3DP to 4DP, the chemistry behind the fundamental working principles of 4D printed objects, materials selection for smart textiles and fashion goods. The central part summarizes the effect of major external stimuli on 4D textile materials followed by the major applications. Lastly, prospects and challenges are discussed, so that future researchers can continue the progress of this technology.  相似文献   
7.
Mesenchymal stem cells (MSCs) are the main cell players in tissue repair and thanks to their self-renewal and multi-lineage differentiation capabilities, they gained significant attention as cell source for tissue engineering (TE) approaches aimed at restoring bone and cartilage defects. Despite significant progress, their therapeutic application remains debated: the TE construct often fails to completely restore the biomechanical properties of the native tissue, leading to poor clinical outcomes in the long term. Pulsed electromagnetic fields (PEMFs) are currently used as a safe and non-invasive treatment to enhance bone healing and to provide joint protection. PEMFs enhance both osteogenic and chondrogenic differentiation of MSCs. Here, we provide extensive review of the signaling pathways modulated by PEMFs during MSCs osteogenic and chondrogenic differentiation. Particular attention has been given to the PEMF-mediated activation of the adenosine signaling and their regulation of the inflammatory response as key player in TE approaches. Overall, the application of PEMFs in tissue repair is foreseen: (1) in vitro: to improve the functional and mechanical properties of the engineered construct; (2) in vivo: (i) to favor graft integration, (ii) to control the local inflammatory response, and (iii) to foster tissue repair from both implanted and resident MSCs cells.  相似文献   
8.
9.
This study presents an improved mathematical model to analyse the stress wave propagation in adhesively bonded functionally graded (FG) circular cylinders (butt joint) under an axial impulsive load. The volume fractions of the material constituents in the upper and lower cylinders were functionally tailored through the thickness of each cylinder using a power-law. The effective material properties of both cylinders, which are made of aluminum (Al) and silicon carbide (SiC), at any point were predicted by using the Mori–Tanaka homogenization scheme. In this improved model, the governing equations of the wave propagation include the spatial derivatives of local mechanical properties and were discretized by means of the finite difference method. The influence of these spatial derivatives and the compositional gradient exponent on the displacement and stress distributions of the joint was investigated. The material composition variations of both cylinders affected the displacement and stress fields whereas the compositional gradient exponent had a minor effect. The stress concentrations were alleviated in time, the displacement and stress distributions/variations around/along the upper and lower cylinder-adhesive interfaces were significantly affected by the adhesive layer. The spatial derivatives also affected the temporal histories of the displacement and stress components evaluated at the selected critical points of the upper cylinder, adhesive layer and lower cylinder. The consideration of the spatial local material derivatives provided a more accurate mathematical model of wave propagations through the graded layered structures.  相似文献   
10.
分析了静电产生的原因,阐述了粉体含能材料生产中的静电起电现象、静电的危害、静电安全性评估标准以及建立在此标准基础上的静电放电危险的评价办法,提出了粉体含能材料在生产、运输中所需要采取的静电防护措施。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号