首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7822篇
  免费   1127篇
  国内免费   296篇
电工技术   181篇
技术理论   2篇
综合类   385篇
化学工业   2559篇
金属工艺   925篇
机械仪表   252篇
建筑科学   154篇
矿业工程   317篇
能源动力   104篇
轻工业   706篇
水利工程   19篇
石油天然气   191篇
武器工业   56篇
无线电   641篇
一般工业技术   1790篇
冶金工业   824篇
原子能技术   47篇
自动化技术   92篇
  2024年   23篇
  2023年   144篇
  2022年   186篇
  2021年   299篇
  2020年   285篇
  2019年   325篇
  2018年   303篇
  2017年   398篇
  2016年   407篇
  2015年   371篇
  2014年   455篇
  2013年   535篇
  2012年   565篇
  2011年   528篇
  2010年   393篇
  2009年   404篇
  2008年   326篇
  2007年   439篇
  2006年   437篇
  2005年   436篇
  2004年   375篇
  2003年   334篇
  2002年   304篇
  2001年   211篇
  2000年   161篇
  1999年   112篇
  1998年   94篇
  1997年   66篇
  1996年   48篇
  1995年   46篇
  1994年   46篇
  1993年   41篇
  1992年   39篇
  1991年   27篇
  1990年   17篇
  1989年   20篇
  1988年   9篇
  1987年   12篇
  1986年   5篇
  1985年   3篇
  1984年   5篇
  1982年   3篇
  1981年   6篇
  1980年   1篇
  1974年   1篇
排序方式: 共有9245条查询结果,搜索用时 195 毫秒
1.
Water contamination is a global challenge impacting both the environment and human health with significant economic and social costs. The growing scarcity of usable water resources requires effective treatment of wastewater. In this context, developing cheaper, safer and more efficient wastewater treatment technologies are the need of the hour. One promising approach that several studies have reported success has been the usage of nanomaterials in water and waste water management. The rapid progress of research in nanomaterial sciences has shown their growing potential; however, there has not been a great amount of information available on their implementation. This review focuses on developments in nanotechnology that hold strong potential for wastewater treatment. The review covers key techniques in nanomaterial‐based water treatments including adsorption, filtration and photocatalysis with recent examples showing how to improve their properties and efficiencies according to the need.  相似文献   
2.
Considering the advent of antibiotic resistance, the study of bacterial metabolic behavior stimulated by novel antimicrobial agents becomes a relevant tool to elucidate involved adaptive pathways. Profiling of volatile metabolites was performed to monitor alterations of bacterial metabolism induced by biosynthesized silver nanoparticles (bio-AgNPs). Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae and Proteus mirabilis were isolated from pressure ulcers, and their cultures were prepared in the presence/absence of bio-AgNPs at 12.5, 25 and 50 µg mL−1. Headspace solid phase microextraction associated to gas chromatography–mass spectrometry was the employed analytical platform. At the lower concentration level, the agent promoted positive modulation of products of fermentation routes and bioactive volatiles, indicating an attempt of bacteria to adapt to an ongoing suppression of cellular respiration. Augmented response of aldehydes and other possible products of lipid oxidative cleavage was noticed for increasing levels of bio-AgNPs. The greatest concentration of agent caused a reduction of 44 to 80% in the variety of compounds found in the control samples. Pathway analysis indicated overall inhibition of amino acids and fatty acids routes. The present assessment may provide a deeper understanding of molecular mechanisms of bio-AgNPs and how the metabolic response of bacteria is untangled.  相似文献   
3.
An ecofriendly and biodegradable porous structure was prepared from drying aqueous foams based on nano fibrillated cellulose (NFC), extracted from softwood pulp by subcritical water/CO2 treatment (SC-NFC). The primary aim of this work was to use the modified SC-NFC as stabilizer for a water-based Pickering emulsion which upon drying, yielded porous cellulosic materials, a good dye adsorbent. In order to exploit the carboxymethylated SC-NFC (CMSC-NFC, with a degree of substitution of 0.35 and a charge density of 649 μeqv/g) as a stabilizer for water-based Pickering emulsion in subsequent step, an optimized quantity of octyl amine (30 mg/g of SC-NFC) was added to make them partially hydrophobic. A series of dry foam structures were prepared by varying the concentrations of treated CMSC-NFCs and 4 wt% was found to be the optimum concentration to yield foam with high porosity (99%) and low density (0.038 g/cc) along with high compression strength (0.24 MPa), superior to the conventionally extracted NFC. The foams were applied to capture as high as 98% of methylene blue dyes, making them a potential green candidate for treating industrial effluent. In addition, the dye adsorption kinetics and isotherms were found to be well suited with second order kinetics and Langmuir isotherm models.  相似文献   
4.
Here, a fluoride-assisted route for the controlled in-situ synthesis of metal nanoparticles (NPs) (i.e., AgNPs, AuNPs) on polydimethylsiloxane (PDMS) is reported. The size and coverage of the NPs on the PDMS surface are modulated with time and over space during the synthetic process, leveraging the improved yield (10×) and faster kinetics (100×) of NP formation in the presence of F ions, compared to fluoride-free approaches. This enables the maskless preparation of both linear and step gradients and patterns of NPs in 1D and 2D on the PDMS surface. As an application in flexible plasmonics/photonics, continuous and step-wise spatial modulations of the plasmonic features of PDMS slabs with 1D and 2D AgNP gradients on the surface are demonstrated. An excellent spatially resolved tuning of key optical parameters, namely, optical density from zero to 5 and extinction ratio up to 100 dB, is achieved with AgNP gradients prepared in AgF solution for 12 minutes; the performance are comparable to those of commercial dielectric/interference filters. When used as a rejection filter in optical fluorescence microscopy, the AgNP-PDMS slabs are able to reject the excitation laser at 405 nm and retain the green fluorescence of microbeads (100 µm) used as test cases.  相似文献   
5.
6.
7.
以1-甲基咪唑和氯代正丁烷为原料,合成1-丁基-3-甲基咪唑氯盐离子液体;以醋酸锌[Zn(Ac)2]、硫酸锌(ZnSO4)和氯化锌(ZnCl2)为锌源,在1-丁基-3-甲基咪唑氯盐离子液体和丙氨酸体系中与硝酸铈反应,经水热合成法制备得到Ce掺杂的纳米ZnO。采用扫描电子显微镜(SEM)、紫外-可见光吸收光谱(UV-Vis)、X射线衍射仪(XRD)、X射线光电子能谱分析(XPS)和红外光谱(FT-IR)对产品进行表征。以亚甲基蓝(MB)为目标降解物,采用UV-Vis检测,考察了Ce掺杂的纳米ZnO的光催化活性。研究表明,焙烧温度对光催化的晶体结构和光催化活性产生较大的影响;2%Ce/ZnO、焙烧温度为500℃、催化时间为30 min、亚甲基蓝用量0.05 g、pH值为10时降解率可达99.5%以上。  相似文献   
8.
9.
Multicellular tumor spheroid models (MCTS) are often coined as 3D in vitro models that can mimic the microenvironment of tissues. MCTS have gained increasing interest in the nano‐biotechnology field as they can provide easily accessible information on the performance of nanoparticles without using animal models. Considering that many countries have put restrictions on animals testing, which will only tighten in the future as seen by the recent developments in the Netherlands, 3D models will become an even more valuable tool. Here, an overview on MCTS is provided, focusing on their use in cancer research as most nanoparticles are tested in MCTS for treatment of primary tumors. Thereafter, various types of nanoparticles—from self‐assembled block copolymers to inorganic nanoparticles, are discussed. A range of physicochemical parameters including the size, shape, surface chemistry, ligands attachment, stability, and stiffness are found to influence nanoparticles in MCTS. Some of these studies are complemented by animal studies confirming that lessons from MCTS can in part predict the behaviour in vivo. In summary, MCTS are suitable models to gain additional information on nanoparticles. While not being able to replace in vivo studies, they can bridge the gap between traditional 2D in vitro studies and in vivo models.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号