首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   266篇
  免费   39篇
  国内免费   7篇
综合类   15篇
化学工业   149篇
机械仪表   2篇
建筑科学   4篇
能源动力   1篇
轻工业   124篇
石油天然气   4篇
武器工业   2篇
一般工业技术   8篇
冶金工业   1篇
原子能技术   1篇
自动化技术   1篇
  2024年   1篇
  2023年   5篇
  2022年   12篇
  2021年   16篇
  2020年   10篇
  2019年   17篇
  2018年   18篇
  2017年   3篇
  2016年   13篇
  2015年   16篇
  2014年   17篇
  2013年   27篇
  2012年   22篇
  2011年   16篇
  2010年   10篇
  2009年   11篇
  2008年   11篇
  2007年   16篇
  2006年   19篇
  2005年   7篇
  2004年   10篇
  2003年   3篇
  2002年   5篇
  2001年   1篇
  2000年   3篇
  1999年   5篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1985年   1篇
排序方式: 共有312条查询结果,搜索用时 31 毫秒
1.
The microbial transformation of l‐menthol ( 1 ) was investigated by using 12 isolates of soil‐borne plant pathogenic fungi, Rhizoctonia solani (AG‐1‐IA Rs24, Joichi‐2, RRG97‐1; AG‐1‐IB TR22, R147, 110.4; AG‐1‐IC F‐1, F‐4, P‐1; AG‐1‐ID RCP‐1, RCP‐3, and RCP‐7) as a biocatalyst. Rhizoctonia solani F‐1, F‐4 and P‐1 showed 89.7–99.9% yields of converted product from 1 , RCP‐1, RCP‐3, and RCP‐7 26.0–26.9% and the other isolates 0.1–12.0%. In the cases of F‐1, F‐4 and P‐1, substrate 1 was converted to (?)‐(1S,3R,4S,6S)‐6‐hydroxymenthol ( 2 ), (?)‐(1S,3R,4S)‐1‐hydroxymenthol ( 3 ) and (+)‐(1S,3R,4R,6S)‐6,8‐dihydroxymenthol ( 4 ), which was a new compound. Substrate 1 was converted to 2 and/or 3 by RRG97‐1, 110.4, RCP‐1, RCP‐3 and RCP‐7. The structures of the metabolic products were elucidated on the basis of their spectral data. In addition, metabolic pathways of the biotransformation of 1 by Rhizoctonia solani are discussed. Finally, from the main component analysis and the differences in the yields of converted product from 1 , the 12 isolates of Rhizoctonia solani were divided into three groups based on an analysis of the metabolites. Copyright © 2003 Society of Chemical Industry  相似文献   
2.
BACKGROUND: The biotransformation of sesquiterpenoids, which are a large class of naturally occurring compounds, using microorganisms as a biocatalyst to produce useful novel organic compounds was investigated. The biotransformation of sesquiterpenoids, (+)‐aromadendrene ( 1 ), (−)‐alloaromadendrene ( 2 ) and (+)‐ledene ( 3 ) has been investigated using Aspergillus wentii as a biocatalyst. Results: Compound 1 was converted to (−)‐(10S,11S)‐10,13,14‐trihydroxyaromadendrane ( 4 ). Compound 2 was converted to (+)‐(1S,11S)‐1,13‐dihydroxyaromadendrene ( 5 ) and (−)‐5,11‐epoxycadin‐1(10)‐en‐14‐ol ( 6 ). Compound 3 was converted to compound 6 , (+)‐(10R,11S)‐10,13‐dihydroxyaromadendr‐1‐ene ( 7 ) and (+)‐(10S,11S)‐10,13‐dihydroxyaromadendr‐1‐ene ( 8 ). The structure of the metabolic products has been elucidated on the basis of their spectral data. CONCLUSION: Compound 1 gave only one product that was hydroxylated at C‐10, C‐13 and C‐14. By contrast, compounds 2 and 3 gave a number of products, one of which was common. The differences in oxidation of 1–3 are due to the configuration of the C‐1 position. Compounds 4–8 were new compounds. Copyright © 2008 Society of Chemical Industry  相似文献   
3.
JuvenileAplysia dactylomela were found feeding in abundance on the tropical brown algaStypopodium zonale, a seaweed previously shown to contain numerous unique terpene-quinone natural products. Lipid extracts of these herbivorous mollusks were shown by TLC and HPLC-NMR analyses to contain appreciable quantities of twoS. zonale metabolites as well as one new but closely related compound. Spectroscopic analyses of the new compound in concert with functional group modifications identified this new compound as 3-keto epitaondiol. A careful analysis of the seaweed extract failed to locate this ketone, and thus, it most likely represents anAplysia-biotransformed compound. This is the first clear reported observation of metabolite transfer between an alga of the phylum Phaeophyta and a sea hare.  相似文献   
4.
原人参二醇类皂苷混合物经人参皂苷酶生物转化后可生成F2、C-Mc等7~10种稀有人参皂苷。天然人参中不含人参皂苷C-Mc,且F2的含量极低。在生物转化所得的人参二醇类皂苷酶反应产物中,分离纯化得到稀有人参皂苷F2与C-Mc,并进行HPLC检测。反应后得到粗产品40g,经脱糖脱色和硅胶柱分离后,成功得到稀有人参皂苷F23.49g,纯度为98.2%,得率8.72%;得到C-Mc 0.70g,纯度为82.2%,得率为1.80%。成功分离出了F2和C-Mc制品,建立了初步的分离制备方法。  相似文献   
5.
6.
Enzyme promiscuity has important implications in the field of biocatalysis. In some cases, structural analogues of simple metabolic building blocks can be processed through entire pathways to give natural product derivatives that are not readily accessible by chemical means. In this study, we explored the plasticity of the aurachin biosynthesis pathway with regard to using fluoro- and chloroanthranilic acids, which are not abundant in the bacterial producers of these quinolone antibiotics. The incorporation rates of the tested precursor molecules disclosed a regiopreference for halogen substitution as well as steric limitations of enzymatic substrate tolerance. Three previously undescribed fluorinated aurachin derivatives were produced in preparative amounts by fermentation and structurally characterized. Furthermore, their antibacterial activities were evaluated in comparison to their natural congener aurachin D.  相似文献   
7.
8.
The antioxidant activities of native‐ and tannase‐treated green tea extracts along with their major polyphenol components were investigated. The polyphenolic content and composition of the tea before and after tannase treatment were determined by liquid chromatography coupled with mass spectrometry (LC‐MS). Approximately 99% of the (?)‐epigallocatechin gallate (EGCG) and (?)‐epicatechin gallate (ECG) in green tea extract were converted by tannase to (?)‐epigallocatechin (EGC) and (?)‐epicatechin (EC), respectively, after 30 min. Biotransformed green tea exhibited a significantly higher DPPH˙ radical scavenging activities than native green tea (EC50 value of 0.024 ± 0.001 and 0.044 ± 0.001 mg mL?1, respectively). Kinetic parameters such as scavenging rate and stoichiometry were calculated. The rate of DPPH˙ radical scavenging activities for tannase‐treated green tea extract was shown to be higher than native green tea extract.  相似文献   
9.
10.
BACKGROUND: Arthrobacter simplex cells immobilised in sodium cellulose sulfate/poly‐dimethyl‐diallyl‐ammonium chloride microcapsules were used for the microbial dehydrogenation of 11α‐hydroxy‐16α,17‐epoxyprogesterone to 11α‐hydroxy‐16α,17α‐epoxypregn‐1,4‐diene‐3,20‐dione in an aqueous/organic solvent two‐liquid‐phase system, which is a key reaction in the production of glucocorticoid pharmaceuticals. The aim of the study was to establish a suitable aqueous/organic solvent two‐liquid‐phase system for performing semi‐continuous production in an airlift loop reactor by encapsulated A. simplex cells with the addition of suitable surfactants to achieve a higher yield of the product. RESULTS: n‐Hexane was selected as the most suitable organic solvent. In optimised Tween‐80 emulsion feed mode the conversion in the airlift loop reactor was as high as 97.54% when the time of reaction was 2 h, and the reaction time was greatly shortened. In semi‐continuous production the cultivation with immobilised cells was carried out for five batches in total. The conversion in each batch was above 95% and the enzymatic activity still remained quite high after five batches of biotransformation. CONCLUSION: The results showed that performing the conversion by this method shortened the reaction time and increased the productivity, thus demonstrating the great potential of the method for the dehydrogenation of 11α‐hydroxy‐16α,17‐epoxyprogesterone. Copyright © 2008 Society of Chemical Industry  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号