首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27324篇
  免费   2315篇
  国内免费   1134篇
电工技术   624篇
技术理论   5篇
综合类   1658篇
化学工业   11545篇
金属工艺   1559篇
机械仪表   874篇
建筑科学   930篇
矿业工程   592篇
能源动力   875篇
轻工业   3768篇
水利工程   290篇
石油天然气   1457篇
武器工业   162篇
无线电   1541篇
一般工业技术   3003篇
冶金工业   969篇
原子能技术   307篇
自动化技术   614篇
  2024年   92篇
  2023年   435篇
  2022年   618篇
  2021年   833篇
  2020年   882篇
  2019年   798篇
  2018年   731篇
  2017年   812篇
  2016年   898篇
  2015年   940篇
  2014年   1544篇
  2013年   1634篇
  2012年   1942篇
  2011年   1914篇
  2010年   1411篇
  2009年   1428篇
  2008年   1162篇
  2007年   1648篇
  2006年   1522篇
  2005年   1331篇
  2004年   1218篇
  2003年   1086篇
  2002年   918篇
  2001年   764篇
  2000年   729篇
  1999年   538篇
  1998年   488篇
  1997年   420篇
  1996年   387篇
  1995年   311篇
  1994年   264篇
  1993年   186篇
  1992年   166篇
  1991年   125篇
  1990年   100篇
  1989年   75篇
  1988年   49篇
  1987年   49篇
  1986年   47篇
  1985年   51篇
  1984年   47篇
  1983年   34篇
  1982年   66篇
  1981年   15篇
  1980年   17篇
  1978年   5篇
  1977年   9篇
  1976年   8篇
  1975年   8篇
  1951年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
B4C-TiB2 ceramics (TiB2 ranging 5~70 vol%) with Mo-Co-WC as the sintering additive were prepared by spark plasma sintering. In comparison with B4C-TiB2 without additive, the enhanced densification was evident in the sintered specimen with Mo-Co-WC additive. Core-rim structured grain was observed around TiB2 grains. The interface of the rim between TiB2 and B4C phases demonstrated different feature: the inner borderline of the rim exhibited a smooth feature, whereas a sharp curved grain boundary was observed between the rim and the B4C grain. The formation mechanism is discussed: the epitaxial growth of (Ti,Mo,W)B2 rim around the TiB2 core may occur as a result of the solid solution and dissolution-precipitation between TiB2 phase and the sintering additive. It was revealed that the fracture toughness increased as the content of TiB2 content increased, alongside the decreased hardness. B4C-30 vol% TiB2 specimen demonstrated the optimal combination of mechanical properties, reaching Vickers hardness of 24.3 GPa and fracture toughness of 3.33 MPa·m1/2.  相似文献   
2.
Cell surface and secreted proteins provide essential functions for multicellular life. They enter the endoplasmic reticulum (ER) lumen co-translationally, where they mature and fold into their complex three-dimensional structures. The ER is populated with a host of molecular chaperones, associated co-factors, and enzymes that assist and stabilize folded states. Together, they ensure that nascent proteins mature properly or, if this process fails, target them for degradation. BiP, the ER HSP70 chaperone, interacts with unfolded client proteins in a nucleotide-dependent manner, which is tightly regulated by eight DnaJ-type proteins and two nucleotide exchange factors (NEFs), SIL1 and GRP170. Loss of SIL1′s function is the leading cause of Marinesco-Sjögren syndrome (MSS), an autosomal recessive, multisystem disorder. The development of animal models has provided insights into SIL1′s functions and MSS-associated pathologies. This review provides an in-depth update on the current understanding of the molecular mechanisms underlying SIL1′s NEF activity and its role in maintaining ER homeostasis and normal physiology. A precise understanding of the underlying molecular mechanisms associated with the loss of SIL1 may allow for the development of new pharmacological approaches to treat MSS.  相似文献   
3.
The incursion of microbial growth on polymeric products can deteriorate their performance and lead to the development of undesirable staining and odors. A growing trend in the industry has aimed to reduce microbial populations on high-touch surfaces via the use of antimicrobials to protect material aesthetics and durability or to prevent the spread of pathogenic microorganisms. In this study, a variety of plastic substrates (30 unique polymer compounds), including poly(acrylonitrile-co-butadiene-co-styrene), poly(butylene terephthalate), poly(etherimide), various thermoplastic elastomers (TPEs), poly(carbonates), and poly(amides), were screened for susceptibility to microbial attack using American Society for Testing and Materials (ASTM) G21 (fungi susceptibility), Japanese Industrial Standard (JIS) Z2801, and modified ASTM E1428-15a (bacterial susceptibility) test standards. TPEs were determined to be most susceptible to microbial attack under the appropriate environmental conditions. Subsequent studies assessed the use of an antimicrobial additive, zinc pyrithione (ZPT), for potential efficacy in a variety of TPE blends for diverse target market applications. ZPT proved to be very effective in protecting TPEs, reducing Staphylococcus aureus and Escherichia coli populations by 99.9% or more in JIS Z2801 testing and inhibiting fungal growth (rating = 0) according to the ASTM G21 standard.  相似文献   
4.
在多晶硅太阳能电池的生产过程中, 金刚线切割技术(Diamond wire sawn, DWS)具有切割速度快、精度高、原材料损耗少等优点, 受到了广泛关注。金刚线切割多晶硅表面形成的损伤层较浅, 与传统的酸腐蚀制绒技术无法匹配, 金属催化化学腐蚀法应运而生。金属催化化学腐蚀法制绒具有操作简单、结构可控且易形成高深宽比的绒面等优点, 具有广阔的应用前景。本文总结了不同类型的金属催化剂在制绒过程中的腐蚀机理及其形成的绒面结构, 深入分析和讨论了具有代表性的银、铜的单一及复合催化腐蚀过程及绒面结构和电池片性能。最后对金刚线切割多晶硅片表面的金属催化化学腐蚀法存在的问题进行了分析, 并展望了未来的研究方向。  相似文献   
5.
《Ceramics International》2022,48(20):30376-30383
In this study, α/β-Si3N4 composite ceramics with high hardness and toughness were fabricated by adopting two different novel ternary additives, ZrN–AlN–Al2O3/Y2O3, and spark plasma sintering at 1550 °C under 40 MPa. The phase composition, microstructure, grain distribution, crack propagation process and mechanical properties of sintered bulk were investigated. Results demonstrated that the sintered α/β-Si3N4 composite ceramics with ZrN–AlN–Al2O3 contained the most α phase, which resulted in a maximum Vickers hardness of 18.41 ± 0.31 GPa. In the α/β-Si3N4 composite ceramics with ZrN–AlN–Y2O3 additives, Zr3AlN MAX-phase and ZrO phase were found and their formation mechanisms were explained. The fracture appearance presented coarser elongated β-Si3N4 grains and denser microstructure when 20 wt% TiC particles were mixed into Si3N4 matrix, meanwhile, exhibited maximum mean grain diameter of 0.98 ± 0.24 μm. As a result, the compact α/β-Si3N4 composite ceramics containing ZrN–AlN–Y2O3 additives and TiC particles displayed the optimal bending strength and fracture toughness of 822.63 ± 28.75 MPa and 8.53 ± 0.21 MPa?m1/2, respectively. Moreover, the synergistic toughening of rod-like β-Si3N4 grains and TiC reinforced particles revealed the beneficial effect on the enhanced fracture toughness of Si3N4 ceramic matrix.  相似文献   
6.
Borazine rings act as a pivotal part in siliconboroncarbonitride ceramics (SiBCN) for high-temperature stability and great resistance to crystallization. A detailed investigation of the ring formation mechanism will guide the design and synthesis of SiBCN to meet application requirements under extreme conditions. Boron trichloride (BCl3) and hexamethyldisilazane (HN(SiMe3)2) are common raw materials for the synthesis of precursors for SiBCN. In this paper, quantum chemical calculation was used to study the cyclization reaction mechanism between BCl3 and HN(SiMe3)2 to form trichloroborazine (TCBZ) at the MP2/6-31G (d,p) level of theory. We discussed the structure properties, reaction pathways, energy barriers, reaction rates, and other aspects in detail. The results show that BCl3 and HN(SiMe3)2 alternately participate in the reaction process, accompanied by the release of trimethylchlorosilane (TMCS), and that the entire reaction shows an absolute advantage in terms of energy. In the Step by step reaction, lower reaction barriers are formed due to the introduction of BCl3 with more heat released compared to that for the introduction of HN(SiMe3)2. The final single-molecule cyclization and TMCS elimination steps are found to be faster compared to all previous bimolecular reactions.  相似文献   
7.
Abstract

Different drying methods (spray drying (SD), vacuum drying (VD), microwave vacuum drying (MVD), and infrared vacuum drying (IFVD)) were applied in order to compare the hygroscopicity behavior of chicken powders. The hygroscopicity curves and glass transition temperature were used to evaluate the influence of ambient humidity and temperature on moisture absorption of powders. The results showed that the chicken powder dried by MVD had the lowest moisture absorption, followed by IFVD, VD, and SD. The hygroscopicity of SD chicken powders was different from other three kinds of chicken powders due to the physical properties of particles and the changes of protein secondary structure as detected by the Fourier transform-infrared spectrometer. For the three vacuum drying methods, the difference of protein secondary structure was the main reason of differences in hygroscopicity. Although MVD chicken powders were slightly inferior to SD chicken powders in taste, MVD chicken powders were the best in terms of smell and color as suggested by instrumental sensory parameter evaluations. It was found that MVD had a positive effect on reducing moisture absorption and maintaining sensory quality of chicken powders.  相似文献   
8.
《Ceramics International》2020,46(17):26675-26681
DyCrxFe(1-x)O3 (0 ≤ x ≥ 0.4) nanoparticles were prepared using facile chemical route. Structural and morphological evaluation was carried out using X-ray diffraction (XRD) and electron microscopy. Formation of orthorhombic DyFeO3 nanoparticles was confirmed by XRD with crystallite size of 9–10 nm. FESEM images revealed nearly spherical morphology of the fabricated nanoparticles. Energy dispersive X-ray (EDX) technique was employed to confirm the presence of Dy, Cr, Fe and O elements in DyCrxFe(1-x)O3 nanoparticles. FTIR studies illustrated the presence of characteristics stretching and bending vibrations. UV–visible spectroscopy was used to analyze the photocatalytic performance of the DyFeO3 and Cr-substituted DyFeO3 nanoparticles and optical band gap measurements. Photocatalytic activities of the prepared substituted and un-substituted DyFeO3 nanoparticles were conducted using three different dyes. These dyes were (i) methyl orange, (ii) rhodamine B and (iii) methylene blue. Lower band gap and higher photocatalytic performance was observed for Cr-substituted DyFeO3 nanoparticles with methylene blue dye.  相似文献   
9.
潘杰  李焰 《化工进展》2020,39(11):4503-4515
化学转化膜是金属表面主要的处理方法之一,具备良好的附着力和耐蚀性,能为铝合金提供一定的临时防护。传统的六价铬酸盐化学转化膜在日渐严苛的环保压力下已经逐渐淘汰,取而代之的是近几年发展迅猛的三价铬及无铬锆基化学转化膜。铝合金可分为铸造铝合金和变形铝合金,按照所含主要合金元素和热处理状态可分为若干个系列和型号。本文选取几种典型的变形铝合金,综述了不同铝合金微观组织对转化膜成膜过程的影响,化学转化液添加剂、预处理和后处理工艺对转化膜性能的调控及作用机理,以及几种典型商业钝化剂在变形铝合金表面的应用。总结了目前变形铝合金表面锆基化学转化膜仍面临的问题和发展趋势,未来化学转化膜需在满足新型铝合金发展要求的基础上,通过不同有机、无机添加剂以及外场作用对转化膜的成膜均一性、完整性进行调控,以提高转化膜的综合性能。  相似文献   
10.
The bromodomain and extra terminal (BET) family of bromodomain-containing proteins (BCPs) have been the subject of extensive research over the past decade, resulting in a plethora of high-quality chemical probes for their tandem bromodomains. In turn, these chemical probes have helped reveal the profound biological role of the BET bromodomains and their role in disease, ultimately leading to a number of molecules in active clinical development. However, the BET subfamily represents just 8/61 of the known human bromodomains, and attention has now expanded to the biological role of the remaining 53 non-BET bromodomains. Rapid growth of this research area has been accompanied by a greater understanding of the requirements for an effective bromodomain chemical probe and has led to a number of new non-BET bromodomain chemical probes being developed. Advances since December 2015 are discussed, highlighting the strengths/caveats of each molecule, and the value they add toward validating the non-BET bromodomains as tractable therapeutic targets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号