首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   426篇
  免费   70篇
  国内免费   4篇
综合类   25篇
化学工业   66篇
机械仪表   2篇
轻工业   402篇
石油天然气   1篇
无线电   2篇
一般工业技术   2篇
  2024年   5篇
  2023年   17篇
  2022年   17篇
  2021年   19篇
  2020年   21篇
  2019年   25篇
  2018年   22篇
  2017年   14篇
  2016年   16篇
  2015年   18篇
  2014年   31篇
  2013年   33篇
  2012年   43篇
  2011年   37篇
  2010年   24篇
  2009年   14篇
  2008年   7篇
  2007年   24篇
  2006年   21篇
  2005年   14篇
  2004年   9篇
  2003年   11篇
  2002年   6篇
  2001年   6篇
  2000年   8篇
  1998年   4篇
  1997年   9篇
  1996年   5篇
  1995年   5篇
  1994年   6篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1988年   1篇
  1987年   1篇
排序方式: 共有500条查询结果,搜索用时 31 毫秒
1.
The known flavonoids ginkgetin (1), taiwanhomoflavone A (2), taiwanhomoflavone B (3), and taiwanhomoflavone C (4) and eight known lignans: justicidin B (9), justicidin C (10), justicidin D (11), chinensinaphthol methyl ether (12), procumphthalide A (13), procumbenoside A (15), and ciliatosides A (16) and B (17) were isolated from Cephalotaxus wilsoniana and Justicia species, respectively. The antiplatelet effects of the above constituents on human platelet-rich plasma (PRP) were evaluated. Of the compounds tested on human PRP, compounds 1, 4, 9, and 11 showed inhibition of secondary aggregation induced by adrenaline. Compound 1 had an inhibitory effect on cyclooxygenase-1 (COX-1). Molecular docking studies revealed that 1 and the related compounds apigenin (5), cycloheterophyllin (6), broussoflavone F (7), and quercetin (8) were docked near the gate of active site of COX-1. It indicated that the antiplatelet effect of 1, 4, 9, and 11 is partially owed to suppression of COX-1 activity and reduced thromboxane formation. Flavonoids, 1, 5, 6, 7, and 8 may block the gate of the active site of COX-1 and interfere the conversion of arachidonic acid to prostaglandin (PG) H2 in the COX-1 active site.  相似文献   
2.
Adsorption isotherms of sesame oil in a concentrated miscella system   总被引:2,自引:0,他引:2  
The adsorption of peroxides, unsaturated carbonyls, free fatty acids and carotenoids from unrefined sesame oil on vegetable carbon (5%, w/w) in a miscella system was studied. Three different solvent conditions (hexane/ethanol, 100:0, 95:5 and 75:25, vol/vol), combined in a factorial design with five levels of solvent (0, 10, 20, 30 and 40%, w/w), were used to develop the miscella. Equilibrium adsorption was not achieved during the 100 min of adsorption, mainly because the oil components were involved in oxidation reactions during the adsorption process. However, for a given solvent concentration, adsorption of the oil components showed a significant linear regression on their respective initial concentration in the miscella (Ci). Peroxides and carbonyls showed, at all solvent levels investigated, an affinity for the carbon more independent of their Ci than free fatty acids and carotenoids. In general, at the same Ci, a higher adsorption was achieved as solvent concentration increased. The results indicated that free fatty acid adsorption may depend on competitive adsorption based on molecule hydrophobicity. However, in spite of the higher hydrophobicity of carotenoids, compared with free fatty acids, they might not be competing for the same adsorbing sites. Ethanol showed a prooxidant effect that increased peroxide production during adsorption but did not affect the reaction involved in carbonyl production.  相似文献   
3.
Sesame seed (Sesamum indicum L.) is a rich source of furofuran lignans with a wide range of potential biological activities. The major lignans in sesame seeds are the oil‐soluble sesamin and sesamolin, as well as glucosides of sesaminol and sesamolinol that reside in the defatted sesame flour. Upon refining of sesame oil, acid‐catalyzed transformation of sesamin to episesamin and of sesamolin to epimeric sesaminols takes place, making the profile of refined sesame oils different from that of virgin oils. In this study, the total lignan content of 14 sesame seeds ranged between 405 and 1178 mg/100 g and the total lignan content in 14 different products, including tahini, ranged between 11 and 763 mg/100 g. The content of sesamin and sesamolin in ten commercial virgin and roasted sesame oils was in the range of 444–1601 mg/100 g oil. In five refined sesame oils, sesamin ranged between 118 and 401 mg/100 g seed, episesamin between 12 and 206 mg/100 g seed, and the total contents of sesaminol epimers between 5 and 35 mg/100 g seed, and no sesamolin was found. Thus, there is a great variation in the types and amounts of lignans in sesame seeds, seed products and oils. This knowledge is important for nutritionists working on resolving the connection between diet and health. Since the consumption of sesame seed products is increasing steadily in Europe and USA, it is important to include sesame seed lignans in databases and studies pertinent to the nutritional significance of antioxidants and phytoestrogens. It is also important to differentiate between virgin, roasted and refined sesame oils.  相似文献   
4.
Seeds from different collections of cultivatedSesamum indicum Linn and three related wild species [specifically,S. alatum Thonn.,S. radiatum Schum & Thonn. andS. angustifolium (Oliv.) Engl.] were studied for their oil contents and fatty acid composition of the total lipids. The oils from wild seeds were characterized by higher percentages of unsaponifiables (4.9, 2.6 and 3.7%, respectively) compared toS. indicum (1.4–1.8%), mainly due to their high contents of lignans. Total sterols accounted forca. 40, 22, 20 and 16% of the unsaponifiables of the four species, respectively. The four species were different in the relative percentages of the three sterol fractions (the desmethyl, monomethyl and dimethyl sterols) and in the percentage composition of each fraction. Campesterol, stigmasterol, sitosterol and Δ5-avenasterol were the major desmethyl sterols, whereas obtusifoliol, gramisterol, cycloeucalenol and citrostandienol were the major monomethyl sterols, and α-amyrin, β-amyrin, cycloartenol and 24-methylene cycloartanol were the main dimethyl sterols in all species. Differences were also observed among the four species in sterol patterns of the free sterols compared to the sterol esters.Sesamum alatum contained less tocopherols (210–320 mg/kg oil), andS. radiatum andS. angustifolium contained more tocopherols (ca. 750 and 800 mg/kg oil, respectively) than didS. indicum (490–680 mg/kg oil). The four species were comparable in tocopherol composition, with γ-tocopherol representing 96–99% of the total tocopherols. The four species varied widely in the identity and levels of the different lignans. The percentages of these lignans in the oils ofS. indicum were sesamin (0.55%) and sesamolin (0.50%).Sesamum alatum showed 1.37% of 2-episesalatin and minor amounts of sesamin and sesamolin (0.01% each).Sesamum radiatum was rich in sesamin (2.40%) and contained minor amounts of sesamolin (0.02%), whereS. angustifolium was rich in sesangolin (3.15%) and also contained considerable amounts of sesamin (0.32%) and sesamolin (0.16%).  相似文献   
5.
采用超声波—微波协同提取法提取芝麻渣中蛋白质,并用超滤法进行纯化.实验考察了影响粗蛋白提取率的固液比、溶液pH值、微波功率、提取时间等因素,确定了最佳提取条件;同时考察了超滤膜的截留分子质量以及压力对超滤效果的影响.结果表明:超声波—微波协同提取最佳条件为超声波功率40 W,固液比1∶20,溶液pH11,微波功率250 W、提取时间90 s,提取率约55.32%;采用10万截留分子质量的超滤膜在0.18 MPa压力下对芝麻渣蛋白质纯化后,蛋白质纯度提高了15.67%.  相似文献   
6.
建立了用高效液相色谱法测定南、北五味子中5种木脂素成分(五味子醇甲、五味子醇乙、五味子酯甲、五味子甲素和五味子乙素)的分析方法。以甲醇和水为流动相,采用梯度洗脱,对21个不同产地的南、北五味子样本进行了色谱分离,并利用标准物质、保留时间和紫外光谱对木脂素进行定性。结果表明,样品中各组分的色谱峰基本达到基线分离,该方法重复性好、灵敏度高,为评价南、北五味子中的木脂素活性成分提供了一种可靠的分析方法。  相似文献   
7.
以三氟乙酸为显色剂,对芝麻香油、二级棉籽油、三级棉籽油、一级菜籽油、菜籽毛油5种植物油进行显色反应,并在350~700 nm波长进行紫外-可见光谱扫描.结果显示用三氟乙酸做显色剂能够很明显地将这5种植物油区分开来,所显示的颜色分别为:黄绿色、黄橙色、暗红橙色、红紫色、暗红橙色;并且上述5种植物油显色反应后的紫外-可见光谱扫描曲线差别很大,容易区分.  相似文献   
8.
牛蒡子化学成分研究   总被引:2,自引:0,他引:2  
研究牛蒡子的化学成分。利用各种色谱技术进行分离、纯化,通过波谱解析结合理化性质鉴定化合物的结构。从牛蒡子中分离得到六种化合物,根据理化性质和光谱数据分别鉴定为牛蒡子苷元、邻苯二甲酸二异丁酯、9,12,15-十八碳三烯酸、二十六烷酸、亚油酸乙酯、十八烷酸甘油酯。  相似文献   
9.
五味子木脂素超声循环提取工艺条件的优化   总被引:1,自引:0,他引:1  
采用超声循环提取的方法从五味子中提取五味子醇甲等木脂素类有效成分,考察溶剂、超声时间、超声功率、液固比和温度对提取工艺的影响.结果表明采用85%的乙醇作为提取溶剂,在单因素实验的基础上通过正交实验得出最佳工艺条件:超声功率500W,超声时间10min,温度30℃,液固比20,五味子木脂素提取率达到80.84%.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号