首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8232篇
  免费   920篇
  国内免费   160篇
电工技术   52篇
技术理论   1篇
综合类   428篇
化学工业   2805篇
金属工艺   48篇
机械仪表   59篇
建筑科学   147篇
矿业工程   50篇
能源动力   326篇
轻工业   4587篇
水利工程   68篇
石油天然气   168篇
武器工业   15篇
无线电   62篇
一般工业技术   276篇
冶金工业   107篇
原子能技术   19篇
自动化技术   94篇
  2024年   47篇
  2023年   148篇
  2022年   254篇
  2021年   303篇
  2020年   305篇
  2019年   279篇
  2018年   270篇
  2017年   281篇
  2016年   286篇
  2015年   323篇
  2014年   427篇
  2013年   518篇
  2012年   704篇
  2011年   665篇
  2010年   452篇
  2009年   405篇
  2008年   358篇
  2007年   529篇
  2006年   417篇
  2005年   356篇
  2004年   278篇
  2003年   267篇
  2002年   223篇
  2001年   175篇
  2000年   175篇
  1999年   159篇
  1998年   107篇
  1997年   94篇
  1996年   85篇
  1995年   70篇
  1994年   64篇
  1993年   48篇
  1992年   56篇
  1991年   30篇
  1990年   33篇
  1989年   28篇
  1988年   15篇
  1987年   17篇
  1986年   10篇
  1985年   11篇
  1984年   11篇
  1983年   7篇
  1982年   4篇
  1981年   5篇
  1980年   5篇
  1978年   1篇
  1976年   2篇
  1973年   2篇
  1951年   3篇
排序方式: 共有9312条查询结果,搜索用时 15 毫秒
1.
2.
A series of novel aliphatic poly(β‐thioether ester)s with various methylene group contents were prepared by direct lipase‐catalyzed polycondensation of the monomer with an acid‐labile β‐thiopropionate group. The polycondensation reaction using immobilized lipase B from Candida antarctica was carried out in diphenyl ether at 90 °C. Poly(β‐thioether ester)s with high molecular weights of 20 500–57 000 Da and narrow polydispersities in the range 1.40–1.48 were obtained. Thermogravimetric analysis, differential scanning calorimetry and wide‐angle X‐ray diffraction were used to investigate the thermal properties and crystal structures of these polyesters. All the poly(β‐thioether ester)s were semicrystalline polymers and thermally stable up to at least 200 °C. In vitro degradation studies showed that they can rapidly degrade under acidic conditions by the hydrolysis of the β‐thiopropionate groups, suggesting their potential as acid‐degradable polymeric materials. © 2019 Society of Chemical Industry  相似文献   
3.
4.
5.
6.
The use of proteins as therapeutics has a long history and is becoming ever more common in modern medicine. While the number of protein-based drugs is growing every year, significant problems still remain with their use. Among these problems are rapid degradation and excretion from patients, thus requiring frequent dosing, which in turn increases the chances for an immunological response as well as increasing the cost of therapy. One of the main strategies to alleviate these problems is to link a polyethylene glycol (PEG) group to the protein of interest. This process, called PEGylation, has grown dramatically in recent years resulting in several approved drugs. Installing a single PEG chain at a defined site in a protein is challenging. Recently, there is has been considerable research into various methods for the site-specific PEGylation of proteins. This review seeks to summarize that work and provide background and context for how site-specific PEGylation is performed. After introducing the topic of site-specific PEGylation, recent developments using chemical methods are described. That is followed by a more extensive discussion of bioorthogonal reactions and enzymatic labeling.  相似文献   
7.
Glycopolymers have attracted increased attention as functional polymeric materials, and simple methods for synthesizing glycopolymers remain needed. This paper reports the aqueous one-pot and chemoenzymatic synthesis of four types of glycopolymers via two reactions: the β-galactosidase-catalyzed glycomonomer synthesis using 4,6-dimetoxy triazinyl β-D-galactopyranoside and hydroxy group-containing (meth)acrylamide and (meth)acrylate derivatives as the activated glycosyl donor substrate and as the glycomonomer precursors, respectively, followed by radical copolymerization of the resulting glycomonomer and excess glycomonomer precursor without isolating the glycomonomers. The resulting glycopolymers bearing galactose moieties exhibited specific and strong interactions with the lectin peanut agglutinin as glycoclusters.  相似文献   
8.
Rice straw is the most abundant agricultural residue on a global scale and is widely available as feedstock for cellulosic fuel production. However, it is highly recalcitrant to biochemical deconstruction and also generates inhibitors that affect enzymatic saccharification. Rice straw from eastern Arkansas was subjected to dilute acid pretreatment (160 °C, 48 min and 1.0% sulfuric acid) and solid-state fermentation with two lignocellulolytic fungi, Trametes hirsuta and Myrothecium roridum, and their saccharification efficacies were compared. T. hirsuta and M. roridum were tested separately; pretreatment of rice straw with either strain for seven days resulted in 19 and 70% enrichment of its holocellulose content, respectively. However, liquid chromatography analysis of the alkali extracts showed significant differences in cell wall degradation by T. hirsuta and M. roridum. T. hirsuta removed 15% more phenolic compounds and 38% more glucan than M. roridum, while M. roridum removed 77% more xylan than T. hirsuta. Fungal and dilute acid pretreated biomass was then hydrolyzed using Accellerase® 1500, a saccharification cocktail. Saccharification efficiency of M. roridum was 37% higher than that of dilute acid pretreatment of rice straw, requiring 8% lower enzyme loading and 50% shorter enzymatic hydrolysis duration. Alkali extraction of fungal pretreated biomass also yielded 10–15 g kg−1 of acid precipitable polymeric lignin (APPL), which is a valuable co-product for biorefineries. In comparison to dilute acid pretreatment, fungal pretreatment could be a cost-effective alternative for the degradation of recalcitrant biomass, such as rice straw.  相似文献   
9.
In this paper, polyborosilazane precursor was synthesied from HMDZ, HSiCl3, BCl3 and CH3NH2 using a multistep method. By controlling the storage conditions, parts of the polyborosilazane fibers were hydrolyzed. FT-IR, NMR, XRD, TEM and monofilament tensile strength test were employed to study the effects of hydrolysis of precursor on the structures and properties of polymer-derived SiBN ceramic fibers. FT-IR and NMR results indicate that Si-N group in PBSZ reacts with H2O to form Si-O-Si group. After pyrolysis reaction at 1400℃, Si-O-Si group will finally transformed into highly ordered cristobalite and β-quartz, resulting in formation of the wrinkled surface of the obtained SiBN ceramic fiber. The strip-like defects on fiber surface, according to monofilament tensile strength test, had a significant effect on mechanical property of the obtained SiBN ceramic fiber and caused no increase in fiber tensile strength of hydrolytic polyborosilazane fiber before and after pyrolytic process.  相似文献   
10.
Herein, we report the use of tungsten(VI) oxide (WO3) as support for Rh0 nanoparticles. The resulting Rh0/WO3 nanoparticles are highly active and stable catalysts in H2 generation from the hydrolysis of ammonia borane (AB). We present the results of our investigation on the particle size distribution, catalytic activity and stability of Rh0/WO3 catalysts with 0.5%, 1.0%, 2.0% wt. Rh loadings in the hydrolysis reaction. The results reveal that Rh0/WO3 (0.5% wt. Rh) is very promising catalyst providing a turnover frequency of 749 min?1 in releasing 3.0 equivalent H2 per mole of AB from the hydrolysis at 25.0 °C. The high catalytic activity of Rh0/WO3 catalyst is attributed to the reducible nature of support. The report covers the results of kinetics study as well as comparative investigation of activity, recyclability, and reusability of colloidal(0) nanoparticles and Rh0/WO3 (0.5 % wt. Rh) catalyst in the hydrolysis reaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号