首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40327篇
  免费   4145篇
  国内免费   1514篇
电工技术   994篇
综合类   2037篇
化学工业   10134篇
金属工艺   1113篇
机械仪表   548篇
建筑科学   1391篇
矿业工程   1700篇
能源动力   1484篇
轻工业   12664篇
水利工程   297篇
石油天然气   4403篇
武器工业   87篇
无线电   1387篇
一般工业技术   2046篇
冶金工业   2900篇
原子能技术   376篇
自动化技术   2425篇
  2024年   275篇
  2023年   790篇
  2022年   1475篇
  2021年   1755篇
  2020年   1654篇
  2019年   1501篇
  2018年   1457篇
  2017年   1622篇
  2016年   1802篇
  2015年   1647篇
  2014年   2448篇
  2013年   2919篇
  2012年   3076篇
  2011年   3218篇
  2010年   2184篇
  2009年   2074篇
  2008年   1791篇
  2007年   2217篇
  2006年   1978篇
  2005年   1530篇
  2004年   1317篇
  2003年   1209篇
  2002年   1047篇
  2001年   848篇
  2000年   700篇
  1999年   581篇
  1998年   448篇
  1997年   394篇
  1996年   349篇
  1995年   331篇
  1994年   246篇
  1993年   205篇
  1992年   176篇
  1991年   119篇
  1990年   120篇
  1989年   84篇
  1988年   64篇
  1987年   57篇
  1986年   52篇
  1985年   35篇
  1984年   31篇
  1983年   21篇
  1982年   17篇
  1980年   27篇
  1965年   6篇
  1964年   6篇
  1959年   8篇
  1958年   6篇
  1956年   6篇
  1951年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Herein, molybdenum disulfide nanoflakes decorated copper phthalocyanine microrods (CuPc-MoS2) are synthesized via two step simple hydrothermal method. The as synthesized hybrid along with pure molybdenum disulfide (MoS2) nanoflower and pure copper phthalocyanine (CuPc) microrods are well characterized by various techniques that confirm phase, morphology, elemental compositions etc. Next, electrocatalytic oxygen reduction reaction towards fuel cell is investigated in alkaline medium and obtained results proclaim that our CuPc-MoS2 heterostructure outperforms the other two constituent materials. Efficient oxygen reduction is achieved following four electron pathway by CuPc-MoS2 whereas partial reduction is done through two electron process by CuPc and MoS2 separately. Long-time durability test reveals almost 97.6% retention after 8000s that eventually dictate us that CuPc-MoS2 heterostructure can be the efficient cathode electrocatalyst for future generation fuel cell.  相似文献   
2.
Garzan oil field is located at the south east of Turkey. It is a mature oil field and the reservoir is fractured carbonate reservoir. After producing about 1% original oil in place (OOIP) reservoir pressure started to decline. Waterflooding was started in order to support reservoir pressure and also to enhance oil production in 1960. Waterflooding improved the oil recovery but after years of flooding water breakthrough at the production wells was observed. This increased the water/oil ratio at the production wells. In order to enhance oil recovery again different techniques were investigated. Chemical enhanced oil recovery (EOR) methods are gaining attention all over the world for oil recovery. Surfactant injection is an effective way for interfacial tension (IFT) reduction and wettability reversal. In this study, 31 different types of chemicals were studied to specify the effects on oil production. This paper presents solubility of surfactants in brine, IFT and contact angle measurements, imbibition tests, and lastly core flooding experiments. Most of the chemicals were incompatible with Garzan formation water, which has high divalent ion concentration. In this case, the usage of 2-propanol as co-surfactant yielded successful results for stability of the selected chemical solutions. The results of the wettability test indicated that both tested cationic and anionic surfactants altered the wettability of the carbonate rock from oil-wet to intermediate-wet. The maximum oil recovery by imbibition test was reached when core was exposed 1-ethly ionic liquid after imbibition in formation water. Also, after core flooding test, it is concluded that considerable amount of oil can be recovered from Garzan reservoir by waterflooding alone if adverse effects of natural fractures could be eliminated.  相似文献   
3.
4.
5.
《Ceramics International》2022,48(6):8297-8305
Pure and Sn/Fe co-doped (0.2 at.% Sn and 0.6 at.% Fe, 0.6 at.% Sn and 0.2 at.% Fe, 1.0 at.% Sn and 1.0 at.% Fe) TiO2 nanoparticles were synthesized via a sol-gel method and subsequently calcined at different temperatures. Furthermore, the particles were analyzed by TG-DSC, XRD, TEM, HRTEM, EDS, SAED and UV–Vis for investigating the influences of dopant and calcination temperature on the thermal effect, composition, morphology, energy band gap (Eg) and the degradation efficiency of methyl orange (MO) under various light irradiations respectively. Results indicated that Sn/Fe co-doping inhibited the crystallization transformation from anatase to rutile phase of TiO2 and decreased the Eg. The increased calcination temperature and Sn/Fe co-doped effect brought about the abnormal grain growth of TiO2 nanoparticles. 0.6 at.% Sn/0.2 at.% Fe and 1.0 at.% Sn/1.0 at.% Fe co-doped TiO2 nanoparticles presented better photocatalytic performance than pure and 0.2 at.% Sn/0.6 at.% Fe co-doped TiO2 nanoparticles under visible light irradiation mainly due to the decreased Eg. On the contrary, 0.2 at.% Sn and 0.6 at.% Fe co-doped TiO2 nanoparticles calcined at 650 °C showed the most excellent photocatalytic performance under UV light irradiation, which was about twice as large as that of pure TiO2 possibly due to the formed hybrid structure of anatase and rutile phase as well as the h+-mediated decomposition pathway.  相似文献   
6.
《Journal of dairy science》2022,105(12):9463-9475
Phenyllactic acid (PLA) has been demonstrated to possess antibacterial activity and capacity to prolong food shelf life. However, studies on the performance of PLA in inhibiting Staphylococcus aureus and its effectiveness when applied to dairy products are largely lacking. Here, antibacterial activity (planktonic and biofilm states) of PLA against S. aureus CICC10145 (S. aureus_45) were investigated. The results showed that PLA inhibited growth of S. aureus_45 and formation of S. aureus_45 biofilm. Next, the antibacterial action target of PLA was uncovered from both physiological and phenotypic perspectives. The results showed that PLA decreased cell metabolic activity and cell viability, damaged cell membrane integrity, triggered leakage of intracellular contents (DNA, proteins, and ATP), and caused oxidative stress damage and morphological deformation of S. aureus_45. In practical application, the antibacterial activity of PLA against S. aureus_45 cells was further confirmed in skim milk and cheese as dairy food models, and the antibacterial effects can be adequately maintained during storage for 21 d, at least at 4°C. These findings suggested that PLA could be a potential candidate for controlling S. aureus outgrowth in dairy foods.  相似文献   
7.
Piperine is an alkaloid that has extensive pharmacological activity and impacts other active substances bioavailability due to inhibition of CYP450 enzymes, stimulation of amino acid transporters and P-glycoprotein inhibition. Low solubility and the associated low bioavailability of piperine limit its potential. The combination of piperine with 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) causes a significant increase in its solubility and, consequently, an increase in permeability through gastrointestinal tract membranes and the blood–brain barrier. X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR) were used to characterize interactions between piperine and HP-β-CD. The observed physicochemical changes should be combined with the process of piperine and CD system formation. Importantly, with an increase in solubility and permeability of piperine as a result of interaction with CD, it was proven to maintain its biological activity concerning the antioxidant potential (2,2-diphenyl-1-picryl-hydrazyl-hydrate assay), inhibition of enzymes essential for the inflammatory process and for neurodegenerative changes (hyaluronidase, acetylcholinesterase, butyrylcholinesterase).  相似文献   
8.
Mercury, lead, and cadmium are among the most toxic and carcinogenic heavy metal ions (HMIs), posing serious threats to the sustainability of aquatic ecosystems and public health. There is an urgent need to remove these ions from water by a cheap but green process. Traditional methods have insufficient removal efficiency and reusability. Structurally robust, large surface-area adsorbents functionalized with high-selectivity affinity to HMIs are attractive filter materials. Here, an adsorbent prepared by vulcanization of polyacrylonitrile (PAN), a nitrogen-rich polymer, is reported, giving rise to PAN-S nanoparticles with cyclic π-conjugated backbone and electronic conductivity. PAN-S can be coated on ultra-robust melamine (ML) foam by simple dipping and drying. In agreement with hard/soft acid/base theory, N- and S-containing soft Lewis bases have strong binding to Hg2+, Pb2+, Cu2+, and Cd2+, with extraordinary capture efficiency and performance stability. Furthermore, the used filters, when collected and electrochemically biased in a recycling bath, can release the HMIs into the bath and electrodeposit on the counter-electrode as metallic Hg0, Pb0, Cu0, and Cd0, and the PAN-S@ML filter can then be reused at least 6 times as new. The electronically conductive PAN-S@ML filter can be fabricated cheaply and holds promise for scale-up applications.  相似文献   
9.
Recently, researchers have devoted more attention to supercapacitors (SCs) to integrate with batteries in energy storage systems (ESSs) for vehicle applications. In this study, we attempted to characterize the use of SCs in the ESS for a PEM fuel cell vehicle equipped with an alternator to maximize the performance of regenerative braking. We applied lithium-ion batteries (LIBs) and SCs as energy storage devices to examine their effect on ESS. Then we used a hysteresis brake to apply controllable braking force on the flywheel to form hybrid braking (HB) and made efforts to study its behavior to suggest a braking control strategy. We also ran the whole system over the rotational speed to cover the range of driving speed. At last, we sized the SCs for the most commonly used fuel cell electric vehicle (FCEV) in Korea, i.e., Hyundai NEXO, based on the results obtained from the above study by alternator efficiencies.  相似文献   
10.
The effects of non-thermal plasma (NTP) on the physicochemical properties of wheat flour and the quality of fresh wet noodles ( FWN) were investigated. The results showed that NTP effectively decreased the total plate count (TPC), yeast and mould count (YMC) and Bacillus spp. in wheat flour. Wet gluten contents and the stability time reached the maximum when treated for 20 s. The viscosity of starch increased significantly after treatment due to the increased of damaged starch. The contents of secondary structure were altered to some extent, which was because that the ordered network structure of gluten protein broken. Furthermore, compared with the control, texture properties of FWN were enhanced significantly at 20 s, and the darkening rate of FWN was greatly inhibited due to the low polyphenol oxidase (PPO) activity. Consequently, the most suitable treatment was 500 W for 20 s, providing a basis for the application of NTP in flour products.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号