首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   214篇
  免费   1篇
电工技术   10篇
化学工业   69篇
金属工艺   3篇
建筑科学   2篇
能源动力   2篇
轻工业   23篇
无线电   16篇
一般工业技术   31篇
冶金工业   49篇
原子能技术   5篇
自动化技术   5篇
  2021年   3篇
  2019年   1篇
  2018年   2篇
  2015年   1篇
  2014年   2篇
  2013年   5篇
  2012年   6篇
  2011年   8篇
  2010年   6篇
  2009年   5篇
  2008年   5篇
  2007年   11篇
  2006年   4篇
  2005年   1篇
  2004年   7篇
  2003年   12篇
  2002年   5篇
  2001年   8篇
  2000年   5篇
  1999年   11篇
  1998年   19篇
  1997年   9篇
  1996年   13篇
  1995年   6篇
  1994年   10篇
  1993年   8篇
  1992年   1篇
  1991年   2篇
  1990年   4篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   3篇
  1985年   2篇
  1984年   3篇
  1983年   4篇
  1982年   3篇
  1979年   4篇
  1978年   4篇
  1977年   2篇
  1976年   4篇
  1969年   1篇
排序方式: 共有215条查询结果,搜索用时 31 毫秒
31.
32.
Sano K  Yoshii S  Yamashita I  Shiba K 《Nano letters》2007,7(10):3200-3202
Ferritin nanoparticles ornamented with a Ti-binding peptide are versatile nanoscaled building blocks. Their specific binding ability is strong enough to position them on nanopatterned Ti regions on a Pt substrate. Furthermore, the peptides mineralization activity enables the formation of titania on the outer side of the particle, and the particle's inner nanospaces can serve as a carrier for inorganic nanodots. Making use of all these properties, here we show controlled in aqua fabrication of three-dimensional nanoscale structures. The X-Y positioning obeyed the specific binding of the peptide, while fabrication in the Z-dimension entailed stepwise formation of titania and ferritin layers by alternately applying the binding and mineralization abilities of the Ti-binding peptide. This method paves the way for in aqua fabrication of nanodevices having complicated structures and functions.  相似文献   
33.
Radiation crosslinking of carboxymethylcellulose (CMC) with a degree of substitution (DS) from 0.7 to 2.2 was the subject of the current investigation. CMC was irradiated in solid‐state and aqueous solutions at various irradiation doses. The DS and the concentration of the aqueous solution had a remarkable affect on the crosslinking of CMC. Irradiation of CMC, even with a high DS, 2.2 in solid state, and a low DS, 0.7 in 10% aqueous solution, resulted in degradation. However, it was found that irradiation of CMC with a relatively high DS, 1.32, led to crosslinking in a 5% aqueous solution, and 20% CMC gave the highest gel fraction. CMC with a DS of 2.2 induced higher crosslinking than that with a DS of 1.32 at lower doses with the same concentration. Hence, it was apparent that a high DS and a high concentration in an aqueous solution were favorable for high crosslinking of CMC. It is assumed that high radiation crosslinking of CMC was induced by the increased mobility of its molecules in water and by the formation of CMC radicals from the abstraction of H atoms from macromolecules in the intermediate products of water radiolysis. A preliminary biodegradation study confirmed that crosslinked CMC hydrogel can be digested by a cellulase enzyme. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 278–283, 2000  相似文献   
34.
Improvement of processability of Poly(ε‐caprolactone) (PCL) was achieved by introduction of a branch structure using gamma‐irradiation from a 60Co source. Irradiated PCL has higher molecular weight by producting a branch structure. Hence, the irradiation at a lower dose, such as 3 Mrad, leads to a higher melt viscosity. The branched structure gave improved properties for dynamic viscoelasticity and elongational viscosity. High elongational viscosity was observed by entanglement due to branch chain formed during irradiation, and the elongational viscosity for 3 Mrad is higher than 1.5 Mrad. Due to a higher elongational viscosity, PCL foam can be produced by a molding process. Foam produced from irradiated PCL pellets at 3 Mrad has honeycomb‐like structure, and the foam showed higher enzymatic degradation compared to film samples. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1815–1820, 1999  相似文献   
35.
High-melt-strength polypropylene (PP) was achieved with irradiation by an electron beam generated from an accelerator in the presence of polyfunctional monomers (PFM). Among 16 PFMs, the relatively shorter molecular chain bifunctional monomers such as 1,4-butanediol diacrylate (BDDA) and 1,6-hexanediol diacrylate (HDDA) were the most effective for enhancing the melt strength of PP. The concentration and dose of the HDDA to obtain the high melt strength PP in irradiation under nitrogen gas atmosphere were 1.5 mmol/100 g PP and 1 kGy, respectively. DSC measurement and dynamic mechanical analysis showed that the thermal behavior of the high-melt-strength PP was different from that of the original PP. Crystallinity and crystallization temperature during cooling after heating were lower and higher in high melt strength PP than original PP, respectively. Elongational viscosity at 180°C of the high-melt-strength PP showed a remarkable increase at a certain elongational time with constant strain rate, demonstrating the typical property of high-melt-strength samples. This implies that a few higher molecular chains of PP, formed by intermolecular combination of its chain by HDDA in irradiation, give higher melt strength to induce entanglement of molecular chains. © 1996 John Wiley & Sons, Inc.  相似文献   
36.
This paper reports new methodology to obtain a calibration model for noninvasive blood glucose monitoring using diffuse reflectance near-infrared (NIR) spectroscopy. Conventional studies of noninvasive blood glucose monitoring with NIR spectroscopy use a calibration model developed by in vivo experimental data sets. In order to create a calibration model, we have used a numerical simulation of light propagation in skin tissue to obtain simulated NIR diffuse reflectance spectra. The numerical simulation method enables us to design parameters affecting the prediction of blood glucose levels and their variation ranges for a data set to create a calibration model using multivariate analysis without any in vivo experiments in advance. By designing the parameters and their variation ranges appropriately, we can prevent a calibration model from chance temporal correlations that are often observed in conventional studies using NIR spectroscopy. The calibration model (regression coefficient vector) obtained by the numerical simulation has a characteristic positive peak at the wavelength around 1600 nm. This characteristic feature of the regression coefficient vector is very similar to those obtained by our previous in vitro and in vivo experimental studies. This positive peak at around 1600 nm also corresponds to the characteristic absorption band of glucose. The present study has reinforced that the characteristic absorbance of glucose at around 1600 nm is useful to predict the blood glucose level by diffuse reflectance NIR spectroscopy. We have validated this new calibration methodology using in vivo experiments. As a result, we obtained a coefficient of determination, r2, of 0.87 and a standard error of prediction (SEP) of 12.3 mg/dL between the predicted blood glucose levels and the reference blood glucose levels for all the experiments we have conducted. These results of in vivo experiments indicate that if the parameters and their vibration ranges are appropriately taken into account in a numerical simulation, the new calibration methodology provides us with a very good calibration model that can predict blood glucose levels with small errors without conducting any experiments in advance to create a calibration model for each individual patient. This new calibration methodology using numerical simulation has promising potential for NIR spectroscopy, especially for noninvasive blood glucose monitoring.  相似文献   
37.
We have applied a new methodology for noninvasive continuous blood glucose monitoring, proposed in our previous paper, to patients in ICU (intensive care unit), where strict controls of blood glucose levels are required. The new methodology can build calibration models essentially from numerical simulation, while the conventional methodology requires pre-experiments such as sugar tolerance tests, which are impossible to perform on ICU patients in most cases. The in vivo experiments in this study consisted of two stages, the first stage conducted on healthy subjects as preliminary experiments, and the second stage on ICU patients. The prediction performance of the first stage was obtained as a correlation coefficient (r) of 0.71 and standard error of prediction (SEP) of 28.7 mg/dL. Of the 323 total data, 71.5% were in the A zone, 28.5% were in the B zone, and none were in the C, D, and E zones for the Clarke error-grid analysis. The prediction performance of the second stage was obtained as an r of 0.97 and SEP of 27.2 mg/dL. Of the 304 total data, 80.3% were in the A zone, 19.7% were in the B zone, and none were in the C, D, and E zones. These prediction results suggest that the new methodology has the potential to realize a noninvasive blood glucose monitoring system using near-infrared spectroscopy (NIRS) in ICUs. Although the total performance of the present monitoring system has not yet reached a satisfactory level as a stand-alone system, it can be developed as a complementary system to the conventional one used in ICUs for routine blood glucose management, which checks the blood glucose levels of patients every few hours.  相似文献   
38.
Using a halide vapor phase epitaxy (HVPE) technique in which the starting materials are ZnCl2 generated by the reaction between high purity Zn metal (7 N grade) and Cl2 gas, and H2O, ZnO crystals have been grown at a high temperature of 1000 °C on sapphire substrates with and without surface nitridation treatment. It was found that the nitridation treatment resulted in a change of the (112?0) sapphire surface to a (0001) AlN structure, leading to two possible sets of orientations for (0001) ZnO crystals. In addition, the nitridation treatment leads to a smaller average ZnO grain size and a higher density of nuclei.  相似文献   
39.
Oil mixtures of medium-chain triglycerides (MCT) and D-limonene in mixing ratios from 10 to 100 wt% were encapsulated in modified starch (wall material) by spray drying to produce oil-rich powders. The oil load (mass ratio of oil mixture to wall material) of the infeed emulsion markedly influenced the properties of the infeed liquid and the characteristics of the resulting powder. The viscosity of the infeed liquid and the particle size of the powder exponentially decreased with increasing oil load, while the emulsion droplet size in the infeed liquid increased. In addition, retention of D-limonene during spray drying also decreased markedly with increasing oil load. Irrespective of the different oil loads and concentrations of the wall material, D-limonene retention was well correlated with the emulsion droplet diameter of the infeed liquid. The encapsulation efficiency of the oil mixture exhibited a maximum value (almost 100%) at an oil load between 0.5 and 1.0, before decreasing at higher oil loads. At an oil load of 2.0, the encapsulation efficiency of D-limonene was reduced to almost zero, while around 40% of the initial MCT was encapsulated in the powder. The increase in oil load also led to increased amounts of surface oil of MCT and D-limonene in the resulting powder due to the increasing emulsion droplet diameter of the infeed liquids. PRACTICAL APPLICATION: This study proposes the microencapsulation of medium-chain triglycerides under high-oil-load conditions by spray drying. The powders prepared by this process provide significant benefits in terms of rapid energy conversion after consumption without accumulation in the body. Important quality factors of the powder products such as the encapsulation efficiency and the amount of surface oil were examined to understand the optimum process conditions for spray drying.  相似文献   
40.
Silk is a protein fiber used to weave fabrics and as a biomaterial in medical applications. Recently, genetically modified silks have been produced from transgenic silkworms. In the present study, transgenic silkworms for the mass production of three colors of fluorescent silks, (green, red, and orange) are generated using a vector originating from the fibroin H chain gene and a classical breeding method. The suitability of the recombinant silks for making fabrics is investigated by harvesting large amounts of the cocoons, obtained from rearing over 20 thousand silkworms. The application of low temperature and a weakly alkaline solution for cooking and reeling enables the production of silk fiber without loss of color. The maximum strain tolerated and Young's modulus of the fluorescent silks are similar to those of ordinary silk, although the maximum stress value of the recombinant silk is slightly lower than that of the control. Fabrics with fluorescent color are demonstrated using the recombinant silk, with the color persisting for over two years. The results indicate that large amounts of genetically modified silk can be made by transgenic silkworms, and the silk is applicable as functional silk fiber for making fabrics and for use in medical applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号