首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   517032篇
  免费   37066篇
  国内免费   20735篇
电工技术   27711篇
技术理论   50篇
综合类   35389篇
化学工业   81652篇
金属工艺   29933篇
机械仪表   30942篇
建筑科学   36550篇
矿业工程   14449篇
能源动力   13016篇
轻工业   36080篇
水利工程   9775篇
石油天然气   27567篇
武器工业   3729篇
无线电   56160篇
一般工业技术   62144篇
冶金工业   23534篇
原子能技术   4817篇
自动化技术   81335篇
  2024年   1250篇
  2023年   6444篇
  2022年   11081篇
  2021年   16836篇
  2020年   12911篇
  2019年   10335篇
  2018年   24580篇
  2017年   25333篇
  2016年   21125篇
  2015年   17840篇
  2014年   22363篇
  2013年   26501篇
  2012年   32148篇
  2011年   41114篇
  2010年   36330篇
  2009年   32292篇
  2008年   33145篇
  2007年   32912篇
  2006年   25731篇
  2005年   23190篇
  2004年   16189篇
  2003年   14419篇
  2002年   13052篇
  2001年   11200篇
  2000年   10796篇
  1999年   10976篇
  1998年   8329篇
  1997年   7003篇
  1996年   6582篇
  1995年   5351篇
  1994年   4322篇
  1993年   2941篇
  1992年   2353篇
  1991年   1781篇
  1990年   1353篇
  1989年   1106篇
  1988年   895篇
  1987年   540篇
  1986年   427篇
  1985年   259篇
  1984年   197篇
  1983年   158篇
  1982年   142篇
  1981年   92篇
  1980年   121篇
  1979年   51篇
  1965年   47篇
  1959年   49篇
  1955年   63篇
  1954年   68篇
排序方式: 共有10000条查询结果,搜索用时 29 毫秒
81.
The degradation behavior of implants is significantly important for bone repair. However, it is still unprocurable to spatiotemporally regulate the degradation of the implants to match bone ingrowth. In this paper, a magneto-controlled biodegradation model is established to explore the degradation behavior of magnetic scaffolds in a magnetothermal microenvironment generated by an alternating magnetic field (AMF). The results demonstrate that the scaffolds can be heated by magnetic nanoparticles (NPs) under AMF, which dramatically accelerated scaffold degradation. Especially, magnetic NPs modified by oleic acid with a better interface compatibility exhibit a greater heating efficiency to further facilitate the degradation. Furthermore, the molecular dynamics simulations reveal that the enhanced motion correlation between magnetic NPs and polymer matrix can accelerate the energy transfer. As a proof-of-concept, the feasibility of magneto-controlled degradation for implants is demonstrated, and an optimizing strategy for better heating efficiency of nanomaterials is provided, which may have great instructive significance for clinical medicine.  相似文献   
82.
Neural Processing Letters - Raman spectroscopy is often used for the composition determination and rapid classification of materials because it can reflect the molecular information of materials....  相似文献   
83.
In this study, the effect of high-intensity ultrasound (HIUS) (200 and 400 W for 0, 5, 10 and 15 min respectively) on conformational changes, physicochemical, rheological and emulsifying properties of scallop (Patinopecten yessoensis) myofibrillar protein (SMP) was investigated. HIUS-treated SMP had lower α-helix content and higher β-sheet content compared with the native SMP. HIUS treatment induced the unfolding of SMP and increased the surface hydrophobicity. The particle size of SMP decreased and the absolute zeta-potential increased after ultrasonication, which in turn increased the solubility of SMP. The conformational changes and the improvement of physicochemical properties of SMP increased the ability for SMP to lower the interfacial tension at the oil–water interface and increased the percentage of adsorbed protein. As a result, the emulsifying properties, rheological properties of SMP and storage stability of emulsions were also improved. In conclusion, HIUS treatment has future potential for improving the emulsifying properties of SMP.  相似文献   
84.
85.
Sensitivity and multi-directional motivation are major two factors for developing optimized humidity-response materials, which are promising for sensing, energy production, etc. Organic functional groups are commonly used as the water sensitive units through hydrogen bond interactions with water molecules in actuators. The multi-coordination ability of inorganic ions implies that the inorganic ionic compounds are potentially superior water sensitive units. However, the particle forms of inorganic ionic compounds produced by classical nucleation limit the number of exposed ions to interact with water. Recent progress on the inorganic ionic oligomers has broken through the limitation of classical nucleation, and realized the molecular-scaled incorporation of inorganic ionic compounds into an organic matrix. Here, the incorporation of hydrophilic calcium carbonate ionic oligomers into hydrophobic poly(vinylidene fluoride) (PVDF) is demonstrated. The ultra-small calcium carbonate oligomers within a PVDF film endow it with an ultra-sensitive, reversible, and bidirectional response. The motivation ability is superior to other bidirectional humidity-actuators at present, which realizes self-motivation on an ice surface, converting the chemical potential energy of the humidity gradient from ice to kinetic energy.  相似文献   
86.
Low-dimensional carbon nanostructures are ideal nanofillers to reinforce the mechanical performance of polymer nanocomposites due to their excellent mechanical properties. Through molecular dynamics simulations, the mechanical performance of poly(vinyl alchohol) (PVA) nanocomposites reinforced with a single-layer diamond – diamane is investigated. It is found the PVA/diamane exhibits similar interfacial strengths and pull-out characteristics with the PVA/bilayer-graphene counterpart. Specifically, when the nanofiller is fully embedded in the nanocomposite, it is unable to deform simultaneously with the PVA matrix due to the weak interfacial load transfer efficiency, thus the enhancement effect is not significant. In comparison, diamane can effectively promote the tensile properties of the nanocomposite when it has a laminated structure as it deforms simultaneously with the matrix. With this configuration, the interlayer sp3 bonds endows diamane with a much higher resistance under compression and shear tests, thus the nanocomposite can reach very high compressive and shear stress. Overall, enhancement on the mechanical interlocking at the interface as triggered by surface functionalization is only effective for the fully embedded nanofiller. This work provides a fundamental understanding of the mechanical properties of PVA nanocomposites reinforced by diamane, which can shed lights on the design and preparation of next generation high-performance nanocomposites.  相似文献   
87.
In this study, the anti-atherosclerotic properties of three marine phospholipids (MPLs) extracts from fishery by-products including codfish roe, squid gonad, and shrimp head are verified. Their effects on key factors involved in atherosclerosis are examined and compared to explore whether the differences in their constitutions lead to the differences in the function. All three MPLs dampen oxidation of low- density lipoproteins (LDL) in vitro. Treating RAW264.7 macrophages and HUVECs endothelial cells with each MPLs ranging 10–100 µg mL−1 does not decrease cell viability, yet ox-LDL caused cytotoxicity of both cells are alleviated by 50 or 100 µg mL−1 MPLs treatment. In addition, the three MPLs reduce ox-LDL induced macrophage foam-like transition, mainly through inhibition of lipid uptake. Of the three MPLs, the one from squid gonad exhibits the best effect. On the other hand, all three MPLs modulate inflammatory responses, equally, by inhibiting the adhesion of monocytes to endothelial cells, and decreasing secretion of pro-inflammatory cytokines IL-6 and MCP-1. Using a high-cholesterol diet induced zebrafish model, it is found that all three MPLs, especially the one from squid gonad, alleviates cholesterol accumulation in early plaques, and decreases total cholesterol as well as lipid peroxide in vivo. Practical Applications: As a way of making the best of the increasingly scarce marine resources, valuable lipid components can be recovered from by-products and wastes from the fishery industry. Here, we tested the anti-atherosclerotic effects and the mechanisms of three MPLs extracted from codfish roe, squid gonad, and shrimp head. Our study provides further evidence that marine phospholipids extracted from fishery by-products could protect against atherosclerosis, and helps to elucidate the structure-function relationship of MPLs.  相似文献   
88.
对浸矿后离子型稀土原地浸矿场采用清水进行淋洗,在184天的清水淋洗过程中,尾水氨氮值从最开始的507mg/L,降低至140mg/L,淋洗尾水pH4.52~3.10。淋洗尾水采用两级反渗透膜分离,既回收有价资源稀土,又能使出水氨氮达标。结果表明,产水氨氮浓度稳定低于15mg/L,对稀土的截留率高于98.25%,浓水中稀土离子平均浓度313.4mg/L,可进一步回收稀土资源。  相似文献   
89.
Li  Yuru  Wang  Fei  Zheng  Zhaowen 《Neural Processing Letters》2022,54(4):3141-3156
Neural Processing Letters - This paper presents an approach to identify the unknown parameters of genetic regulatory network (GRN) in finite-time. The adaptive synchronization-based method is used...  相似文献   
90.
Ce:Y3Al5O12 transparent ceramics (TCs) with appropriate emission light proportion and high thermal stability are significant to construct white light emitting diode devices with excellent chromaticity parameters. In this work, strategies of controlling crystal-field splitting around Ce3+ ion and doping orange-red emitting ion, were adopted to fabricate Ce:(Y,Tb)3(Al,Mn)5O12 TCs via vacuum sintering technique. Notably, 85.4 % of the room-temperature luminescence intensity of the TC was retained at 150 °C, and the color rendering index was as high as 79.8. Furthermore, a 12 nm red shift and a 16.2 % increase of full width at half maximum were achieved owing to the synergistic effects of Tb3+ and Mn2+ ions. By combining TCs with a 460 nm blue chip, a warm white light with a low correlated color temperature of 4155 K was acquired. Meanwhile, the action mechanism of Tb3+ ion and the energy transfer between Ce3+ and Mn2+ ions were verified in prepared TCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号