首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5480篇
  免费   516篇
  国内免费   56篇
电工技术   61篇
综合类   23篇
化学工业   1183篇
金属工艺   88篇
机械仪表   271篇
建筑科学   111篇
矿业工程   6篇
能源动力   351篇
轻工业   729篇
水利工程   65篇
石油天然气   32篇
武器工业   1篇
无线电   732篇
一般工业技术   1272篇
冶金工业   87篇
原子能技术   56篇
自动化技术   984篇
  2024年   30篇
  2023年   203篇
  2022年   377篇
  2021年   750篇
  2020年   474篇
  2019年   532篇
  2018年   480篇
  2017年   408篇
  2016年   410篇
  2015年   248篇
  2014年   309篇
  2013年   422篇
  2012年   237篇
  2011年   300篇
  2010年   177篇
  2009年   145篇
  2008年   96篇
  2007年   95篇
  2006年   40篇
  2005年   32篇
  2004年   43篇
  2003年   29篇
  2002年   23篇
  2001年   14篇
  2000年   10篇
  1999年   15篇
  1998年   23篇
  1997年   12篇
  1996年   13篇
  1995年   19篇
  1994年   9篇
  1993年   10篇
  1992年   8篇
  1991年   7篇
  1990年   2篇
  1989年   5篇
  1988年   4篇
  1987年   5篇
  1986年   4篇
  1985年   6篇
  1984年   5篇
  1983年   3篇
  1982年   4篇
  1981年   5篇
  1979年   3篇
  1978年   2篇
  1977年   3篇
  1961年   1篇
排序方式: 共有6052条查询结果,搜索用时 328 毫秒
101.
We present a scheme for the implementation of three-qubit Grover’s algorithm using four-level superconducting quantum interference devices (SQUIDs) coupled to a superconducting resonator. The scheme is based on resonant, off-resonant interaction of the cavity field with SQUIDs and application of classical microwave pulses. We show that adjustment of SQUID level spacings during the gate operations, adiabatic passage, and second-order detuning are not required that leads to faster implementation. We also show that the marked state can be searched with high fidelity even in the presence of unwanted off-resonant interactions, level decay, and cavity dissipation.  相似文献   
102.
Data-intensive systems encompass terabytes to petabytes of data. Such systems require massive storage and intensive computational power in order to execute complex queries and generate timely results. Further, the rate at which this data is being generated induces extensive challenges of data storage, linking, and processing. A data-intensive cloud provides an abstraction of high availability, usability, and efficiency to users. However, underlying this abstraction, there are stringent requirements and challenges to facilitate scalable and resourceful services through effective physical infrastructure, smart networking solutions, intelligent software tools, and useful software approaches. This paper analyzes the extensive requirements which exist in data-intensive clouds, describes various challenges related to the paradigm, and assess numerous solutions in meeting these requirements and challenges. It provides a detailed study of the solutions and analyzes their capabilities in meeting emerging needs of widespread applications.  相似文献   
103.
This paper proposes a spam detection technique, at the packet level (layer 3), based on classification of e-mail contents. Our proposal targets spam control implementations on middleboxes. E-mails are first pre-classified (pre-detected) for spam on a per-packet basis, without the need for reassembly. This, in turn, allows fast e-mail class estimation (spam detection) at receiving e-mail servers to support more effective spam handling on both inbound and outbound (relayed) e-mails. In this paper, the naïve Bayes classification technique is adapted to support both pre-classification and fast e-mail class estimation, on a per-packet basis. We focus on evaluating the accuracy of spam detection at layer 3, considering the constraints on processing byte-streams over the network, including packet re-ordering, fragmentation, overlapped bytes, and different packet sizes. Results show that the proposed layer-3 classification technique gives less than 0.5% false positive, which approximately equals the performance attained at layer 7. This shows that classifying e-mails at the packet level could differentiate non-spam from spam with high confidence for a viable spam control implementation on middleboxes.  相似文献   
104.
A microarray machine offers the capacity to measure the expression levels of thousands of genes simultaneously. It is used to collect information from tissue and cell samples regarding gene expression differences that could be useful for cancer classification. However, the urgent problems in the use of gene expression data are the availability of a huge number of genes relative to the small number of available samples, and the fact that many of the genes are not relevant to the classification. It has been shown that selecting a small subset of genes can lead to improved accuracy in the classification. Hence, this paper proposes a solution to the problems by using a multiobjective strategy in a genetic algorithm. This approach was tried on two benchmark gene expression data sets. It obtained encouraging results on those data sets as compared with an approach that used a single-objective strategy in a genetic algorithm. This work was presented in part at the 13th International Symposium on Artificial Life and Robotics, Oita, Japan, January 31–February 2, 2008  相似文献   
105.
Gene expression technology, namely microarrays, offers the ability to measure the expression levels of thousands of genes simultaneously in biological organisms. Microarray data are expected to be of significant help in the development of an efficient cancer diagnosis and classification platform. A major problem in these data is that the number of genes greatly exceeds the number of tissue samples. These data also have noisy genes. It has been shown in literature reviews that selecting a small subset of informative genes can lead to improved classification accuracy. Therefore, this paper aims to select a small subset of informative genes that are most relevant for cancer classification. To achieve this aim, an approach using two hybrid methods has been proposed. This approach is assessed and evaluated on two well-known microarray data sets, showing competitive results. This work was presented in part at the 13th International Symposium on Artificial Life and Robotics, Oita, Japan, January 31–February 2, 2008  相似文献   
106.
Neural Computing and Applications - A lot of different methods are being opted for improving the educational standards through monitoring of the classrooms. The developed world uses Smart...  相似文献   
107.
Underwater optical communication (UOC) has attracted considerable interest in the continuous expansion of human activities in marine/ocean environments. The water-durable and self-powered photoelectrodes that act as a battery-free light receiver in UOC are particularly crucial, as they may directly face complex underwater conditions. Emerging photoelectrochemical (PEC)-type photodetectors are appealing owing to their intrinsic aqueous operation characteristics with versatile tunability of photoresponses. Herein, a self-powered PEC photodetector employing n-type gallium nitride (GaN) nanowires as a photoelectrode, which is decorated with an iridium oxide (IrOx) layer to optimize charge transfer dynamics at the GaN/electrolyte interface, is reported. Strikingly, the constructed n-GaN/IrOx photoelectrode breaks the responsivity-bandwidth trade-off limit by simultaneously improving the response speed and responsivity, delivering an ultrafast response speed with response/recovery times of only 2 µs/4 µs while achieving a high responsivity of 110.1 mA W−1. Importantly, the device exhibits a large bandwidth with 3 dB cutoff frequency exceeding 100 kHz in UOC tests, which is one of the highest values among self-powered photodetectors employed in optical communication system.  相似文献   
108.
Extreme environments are often faced in energy, transportation, aerospace, and defense applications and pose a technical challenge in sensing. Piezoelectric sensor based on single-crystalline AlN transducers is developed to address this challenge. The pressure sensor shows high sensitivities of 0.4–0.5 mV per psi up to 900 °C and output voltages from 73.3 to 143.2 mV for input gas pressure range of 50 to 200 psi at 800 °C. The sensitivity and output voltage also exhibit the dependence on temperature due to two origins. A decrease in elastic modulus (Young's modulus) of the diaphragm slightly enhances the sensitivity and the generation of free carriers degrades the voltage output beyond 800 °C, which also matches with theoretical estimation. The performance characteristics of the sensor are also compared with polycrystalline AlN and single-crystalline GaN thin films to investigate the importance of single crystallinity on the piezoelectric effect and bandgap energy-related free carrier generation in piezoelectric devices for high-temperature operation. The operation of the sensor at 900 °C is amongst the highest for pressure sensors and the inherent properties of AlN including chemical and thermal stability and radiation resistance indicate this approach offers a new solution for sensing in extreme environments.  相似文献   
109.
Coronavirus disease (COVID-19) is a pandemic that has caused thousands of casualties and impacts all over the world. Most countries are facing a shortage of COVID-19 test kits in hospitals due to the daily increase in the number of cases. Early detection of COVID-19 can protect people from severe infection. Unfortunately, COVID-19 can be misdiagnosed as pneumonia or other illness and can lead to patient death. Therefore, in order to avoid the spread of COVID-19 among the population, it is necessary to implement an automated early diagnostic system as a rapid alternative diagnostic system. Several researchers have done very well in detecting COVID-19; however, most of them have lower accuracy and overfitting issues that make early screening of COVID-19 difficult. Transfer learning is the most successful technique to solve this problem with higher accuracy. In this paper, we studied the feasibility of applying transfer learning and added our own classifier to automatically classify COVID-19 because transfer learning is very suitable for medical imaging due to the limited availability of data. In this work, we proposed a CNN model based on deep transfer learning technique using six different pre-trained architectures, including VGG16, DenseNet201, MobileNetV2, ResNet50, Xception, and EfficientNetB0. A total of 3886 chest X-rays (1200 cases of COVID-19, 1341 healthy and 1345 cases of viral pneumonia) were used to study the effectiveness of the proposed CNN model. A comparative analysis of the proposed CNN models using three classes of chest X-ray datasets was carried out in order to find the most suitable model. Experimental results show that the proposed CNN model based on VGG16 was able to accurately diagnose COVID-19 patients with 97.84% accuracy, 97.90% precision, 97.89% sensitivity, and 97.89% of F1-score. Evaluation of the test data shows that the proposed model produces the highest accuracy among CNNs and seems to be the most suitable choice for COVID-19 classification. We believe that in this pandemic situation, this model will support healthcare professionals in improving patient screening.  相似文献   
110.
(Aim) The COVID-19 has caused 6.26 million deaths and 522.06 million confirmed cases till 17/May/2022. Chest computed tomography is a precise way to help clinicians diagnose COVID-19 patients. (Method) Two datasets are chosen for this study. The multiple-way data augmentation, including speckle noise, random translation, scaling, salt-and-pepper noise, vertical shear, Gamma correction, rotation, Gaussian noise, and horizontal shear, is harnessed to increase the size of the training set. Then, the SqueezeNet (SN) with complex bypass is used to generate SN features. Finally, the extreme learning machine (ELM) is used to serve as the classifier due to its simplicity of usage, quick learning speed, and great generalization performances. The number of hidden neurons in ELM is set to 2000. Ten runs of 10-fold cross-validation are implemented to generate impartial results. (Result) For the 296-image dataset, our SNELM model attains a sensitivity of 96.35 ± 1.50%, a specificity of 96.08 ± 1.05%, a precision of 96.10 ± 1.00%, and an accuracy of 96.22 ± 0.94%. For the 640-image dataset, the SNELM attains a sensitivity of 96.00 ± 1.25%, a specificity of 96.28 ± 1.16%, a precision of 96.28 ± 1.13%, and an accuracy of 96.14 ± 0.96%. (Conclusion) The proposed SNELM model is successful in diagnosing COVID-19. The performances of our model are higher than seven state-of-the-art COVID-19 recognition models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号