首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2563篇
  免费   85篇
  国内免费   4篇
电工技术   127篇
综合类   4篇
化学工业   588篇
金属工艺   93篇
机械仪表   40篇
建筑科学   56篇
矿业工程   1篇
能源动力   119篇
轻工业   165篇
水利工程   6篇
石油天然气   4篇
无线电   225篇
一般工业技术   571篇
冶金工业   355篇
原子能技术   75篇
自动化技术   223篇
  2023年   11篇
  2022年   15篇
  2021年   43篇
  2020年   23篇
  2019年   49篇
  2018年   54篇
  2017年   45篇
  2016年   63篇
  2015年   48篇
  2014年   67篇
  2013年   106篇
  2012年   107篇
  2011年   141篇
  2010年   107篇
  2009年   134篇
  2008年   132篇
  2007年   107篇
  2006年   75篇
  2005年   74篇
  2004年   87篇
  2003年   74篇
  2002年   67篇
  2001年   66篇
  2000年   38篇
  1999年   44篇
  1998年   129篇
  1997年   105篇
  1996年   99篇
  1995年   51篇
  1994年   49篇
  1993年   50篇
  1992年   35篇
  1991年   44篇
  1990年   34篇
  1989年   31篇
  1988年   26篇
  1987年   24篇
  1986年   19篇
  1985年   16篇
  1984年   15篇
  1983年   13篇
  1982年   20篇
  1981年   8篇
  1980年   25篇
  1979年   17篇
  1978年   12篇
  1977年   9篇
  1976年   13篇
  1975年   7篇
  1973年   6篇
排序方式: 共有2652条查询结果,搜索用时 15 毫秒
101.
To operate autonomously in forested terrain, unmanned ground vehicles must be able to identify the load‐bearing surface of the terrain (i.e., the ground) and obstacles in the environment. To travel long distances, they must be able to track their position even when the forest canopy obstructs GPS signals, e.g., by tracking progress relative to tree stems. This paper presents a novel, robust approach for modeling the ground plane and tree stems in forests from a single viewpoint using a lightweight LiDAR scanner. Ground plane identification is implemented using a two‐stage approach. The first stage, a local height‐based filter, discards most nonground points. The second stage, based on a support vector machine classifier, identifies which of the remaining points belong to the ground. Main tree stems are modeled as cylinders or cones to estimate the diameter 130 cm above the ground plane. To fit these models, candidate main stem data are selected by finding points approximately 130 cm above the ground. These points are clustered into separate point clouds for each stem. Cylinders and cones are fit to each point cloud, and heuristic filters identify which fits correspond to tree stems. Experimental results from five forested environments demonstrate the effectiveness of this approach. For ground plane estimation, the overall classification accuracy was 86.28% with a mean error for the ground height of approximately 4.7 cm. For stem estimation, up to 50% of the main stems were accurately modeled using cones, with a root mean square diameter error of 13.2 cm.© 2012 Wiley Periodicals, Inc.  相似文献   
102.
This paper presents the time dependence of the mesoscopic strain of a triaxial woven carbon-fiber-reinforced polymer under creep loading measured using digital image correlation (DIC). Two types of DIC techniques were employed for the measurement: conventional subset DIC and mesh DIC. Static tensile and creep tests were carried out, and the time dependence of the mesoscopic strain distribution was investigated by applying these techniques. The ultimate failure of this material is dominated by inter-bundle decohesion caused by relative rigid rotation and relating shear stress. Therefore, these were focused on in the present study. During the creep tests, the fiber directional strain, shear strain, and rotation were monitored using the DIC, and the mechanism for the increase in the specimen’s macro-strain over time was investigated based on the results obtained by the DIC measurement.  相似文献   
103.
Today many people store music media files in personal computers or portable audio players, thanks to recent evolution of multimedia technologies. The more music media files these devices store, the messier it is to search for tunes that users want to listen to. We propose MusCat, a music browser to interactively search for the tunes according to features, not according to metadata (e.g. title, artist name). The technique firstly calculates features of tunes, and then hierarchically clusters the tunes according to the features. It then automatically generates abstract pictures, so that users can recognize characteristics of tunes more instantly and intuitionally. It finally visualizes the tunes by using abstract pictures. MusCat enables intuitive music selection with the zooming user interface.  相似文献   
104.
105.
There has been an increasing prevalence of neurodegenerative diseases with the rapid increase in aging societies worldwide. Biomarkers that can be used to detect pathological changes before the development of severe neuronal loss and consequently facilitate early intervention with disease-modifying therapeutic modalities are therefore urgently needed. Diffusion magnetic resonance imaging (MRI) is a promising tool that can be used to infer microstructural characteristics of the brain, such as microstructural integrity and complexity, as well as axonal density, order, and myelination, through the utilization of water molecules that are diffused within the tissue, with displacement at the micron scale. Diffusion tensor imaging is the most commonly used diffusion MRI technique to assess the pathophysiology of neurodegenerative diseases. However, diffusion tensor imaging has several limitations, and new technologies, including neurite orientation dispersion and density imaging, diffusion kurtosis imaging, and free-water imaging, have been recently developed as approaches to overcome these constraints. This review provides an overview of these technologies and their potential as biomarkers for the early diagnosis and disease progression of major neurodegenerative diseases.  相似文献   
106.
Nano-structured arrays are engineered to meet the requirements of a variety of applications such as microfilters, sensors, and structural interface due to their unique mechanical characteristics, which cannot be achieved by conventional solid materials. However, it is hard to evaluate the elastic properties of nano-structured arrays owing to the discrete structure, sample size, and availability of suitable techniques. To facilitate this, we develop an advanced three-dimensional microscale vibration testing process. In the test, a specially designed three-dimensional microspecimen with tuned mass is excited by a piezoelectric actuator, and the resonance frequencies are detected by a laser device successfully. The anisotropic elastic moduli of nano-structured array composed of helical nano-springs are identified from a single spectrum. This array shows so strong characteristic anisotropy that the solid one hardly can attain. The microscale testing technique can be extended to other materials and microstructures.  相似文献   
107.
108.
Neurotrophic factors play key roles in the development and survival of neurons. The potent neuroprotective effects of neurotrophic factors, including brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), glial cell-line derived neurotrophic factor (GDNF) and nerve growth factor (NGF), suggest that they are good therapeutic candidates for neurodegenerative diseases. Glaucoma is a neurodegenerative disease of the eye that causes irreversible blindness. It is characterized by damage to the optic nerve, usually due to high intraocular pressure (IOP), and progressive degeneration of retinal neurons called retinal ganglion cells (RGCs). Current therapy for glaucoma focuses on reduction of IOP, but neuroprotection may also be beneficial. BDNF is a powerful neuroprotective agent especially for RGCs. Exogenous application of BDNF to the retina and increased BDNF expression in retinal neurons using viral vector systems are both effective in protecting RGCs from damage. Furthermore, induction of BDNF expression by agents such as valproic acid has also been beneficial in promoting RGC survival. In this review, we discuss the therapeutic potential of neurotrophic factors in retinal diseases and focus on the differential roles of glial and neuronal TrkB in neuroprotection. We also discuss the role of neurotrophic factors in neuroregeneration.  相似文献   
109.
Sequential anodic and cathodic pulse voltages were applied on anodised Al micro-electrodes in alkaline silicate electrolyte to explore the role of cathodic pulse in AC or bipolar plasma electrolytic oxidation (PEO) process. SEM observation was carried out to observe the sites of anodic and cathodic breakdown and their morphologies. The prior anodic breakdown accelerated the cathodic breakdown at ?50 V, and the acceleration was associated with the preferential cathodic breakdown at the anodic breakdown sites. However, the succeeding anodic breakdown during applying anodic pulse of 420 V for 2 ms was highly suppressed at the cathodic breakdown sites. This would randomise the anodic breakdown sites. Such role may contribute to the formation of rather uniform coatings on aluminium in this electrolyte without large discharge channels when larger cathodic current is applied with respect to the anodic current in AC PEO.  相似文献   
110.
In-situ and transient visualizations of the packing structure of a hydrogen storage alloy bed are carried out using an X-ray computed tomography (CT) system. The packing structure is clearly observed on the microscale using the CT system. When the alloy bed is subjected to hydrogen absorption–desorption cycles, the pulverization progresses from the lower to the upper regions of the bed. After several hydrogen absorption–desorption cycles, the packing structure in the lower region of the bed changes and the microstructural void decreases slightly. Based on these results, we propose a pulverization mechanism of the packed bed in which the friction between particles affects the pulverization process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号