首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24874篇
  免费   3030篇
  国内免费   2015篇
电工技术   1289篇
综合类   1851篇
化学工业   3789篇
金属工艺   988篇
机械仪表   932篇
建筑科学   140篇
矿业工程   106篇
能源动力   1551篇
轻工业   204篇
水利工程   27篇
石油天然气   48篇
武器工业   164篇
无线电   7476篇
一般工业技术   3350篇
冶金工业   303篇
原子能技术   191篇
自动化技术   7510篇
  2024年   118篇
  2023年   1481篇
  2022年   1235篇
  2021年   1315篇
  2020年   1580篇
  2019年   1161篇
  2018年   1124篇
  2017年   2020篇
  2016年   1968篇
  2015年   1761篇
  2014年   2107篇
  2013年   1749篇
  2012年   1935篇
  2011年   1883篇
  2010年   1321篇
  2009年   1400篇
  2008年   703篇
  2007年   1219篇
  2006年   963篇
  2005年   443篇
  2004年   254篇
  2003年   250篇
  2002年   291篇
  2001年   242篇
  2000年   172篇
  1999年   208篇
  1998年   72篇
  1997年   54篇
  1996年   55篇
  1995年   60篇
  1994年   47篇
  1993年   36篇
  1992年   41篇
  1991年   50篇
  1990年   41篇
  1989年   58篇
  1988年   99篇
  1987年   186篇
  1986年   169篇
  1985年   41篇
  1983年   1篇
  1980年   1篇
  1978年   1篇
  1975年   1篇
  1959年   1篇
  1951年   2篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
2.
A body-centered cubic equiatomic TiZrTaNbAl multi-principal element alloy (MPEA) with elemental fluctuations was investigated to further understand the relationship between the microstructure and hydrogen distribution. In this study, a composition dependence of the hydrogen distribution was observed in the TiZrTaNbAl MPEA. An inhomogeneous electron density distribution of the MPEA was revealed by advanced differential phase-contrast scanning electron microscopy (DPC-STEM) for the first time. The results showed that the electron density has a significant effect on the hydrogen distribution in TiZrTaNbAl MPEAs. This work provides new insight into the design of materials with high hydrogen storage capacity and high hydrogen embrittlement resistance.  相似文献   
3.
Oxygen evolution reaction (OER) plays a decisive role in electrolytic water splitting. However, it is still challengeable to develop low-cost and efficient OER electrocatalysts. Herein, we present a combination strategy via heteroatom doping, hetero-interface engineering and introducing conductive skeleton to synthesize a hybrid OER catalyst of CNT-interconnected iron-doped NiP2/Ni2P (Fe-(NiP2/Ni2P)@CNT) heterostructural nanoflowers by a simple hydrothermal reaction and subsequent phosphorization process. The optimized Fe-(NiP2/Ni2P)@CNT catalyst delivers an ultralow Tafel slope of 46.1 mV dec?1 and overpotential of 254 mV to obtain 10 mA cm?2, which are even better than those of commercial OER catalyst RuO2. The excellent OER performance is mainly attributed to its unique nanoarchitecture and the synergistic effects: the nanoflowers constructed by a 2D-like nanosheets guarantee large specific area and abundant active sites; the highly conductive CNT skeleton and the electronic modulation by the heterostructural NiP2/Ni2P interface and the hetero-atom doping can improve the catalytic activity; porous nanostructure benefits electrolyte penetration and gas release; most importantly, the rough surface and rich defects caused by phosphorization process can further enhance the OER performance. This work provides a deep insight to boost catalytic performance by heteroatom doping and interface engineering for water splitting.  相似文献   
4.
Tracking control of oxygen excess ratio (OER) is crucial for dynamic performance and operating efficiency of the proton exchange membrane fuel cell (PEMFC). OER tracking errors and overshoots under dynamic load limit the PEMFC output power performance, and also could lead oxygen starvation which seriously affect the life of PEMFC. To solve this problem, an adaptive sliding mode observer based near-optimal OER tracking control approach is proposed in this paper. According to real time load demand, a dynamic OER optimization strategy is designed to obtain an optimal OER. A nonlinear system model based near-optimal controller is designed to minimize the OER tracking error under variable operation condition of PEMFC. An adaptive sliding mode observer is utilized to estimate the uncertain parameters of the PEMFC air supply system and update parameters in near-optimal controller. The proposed control approach is implemented in OER tracking experiments based on air supply system of a 5 kW PEMFC test platform. The experiment results are analyzed and demonstrate the efficacy of the proposed control approach under load changes, external disturbances and parameter uncertainties of PEFMC system.  相似文献   
5.
Journal of Materials Science: Materials in Electronics - In this study, zinc oxide (ZnO) nanowires (NWs) were successfully produced on Zn plates through electrochemical anodization in potassium...  相似文献   
6.
In this study, seven different filler materials in different proportions were added to a Ba-Ca-Si glass matrix “H” to investigate new sealant with higher thermal expansion coefficient (CTE) value and good sealing performance for application in oxygen transport membrane (OTM). SrTi0.75Fe0.25O3-δ (STF25) was used as an OTM, and the sealing partners were ferritic steel Aluchrom and pre-oxidized Aluchrom. Compatibility tests were carried out to investigate the feasibility of the composites. Higher CTE values were found in dilatometer tests on composite samples by adding 40 wt% Ag (HAg40) and 30 wt% Ni-Cr (HNC30). Gas-tightness measurements of sandwiched samples produced appropriate helium leakage rates in the range of 10?6 mbar·l·s?1. Sealing behaviour of sealants HAg40 and HNC30 were investigated by joining STF25 and as-delivered/pre-oxidized Aluchrom together. Scanning electron microscopy (SEM) on cross-sections of the joints revealed a homogeneous microstructure and good adherence of the glass sealants to support metals and STF25.  相似文献   
7.
《Ceramics International》2022,48(15):21502-21514
Based on the good osteogenic and angiogenic effects of silicon and magnesium elements, three types of micro-nano magnesium-containing silicates (MS), including akermanite (Ake, Ca2MgSi2O7), diopside (Dio, CaMgSi2O6) and forsterite (For, Mg2SiO4), were incorporated into calcium phosphate cement (CPC) to improve its osteogenic and angiogenic performances for clinical application. In this present work, the physicochemical properties, osteogenesis and angiogenesis of MS/CPCs (Ake/CPCs, Dio/CPCs and For/CPCs) were investigated systematically and comparatively. The results showed that all MS/CPCs had good biomineralization and significantly stimulated the osteogenic differentiation of mBMSCs and angiogenic differentiation of HUVECs, respectively. Besides, the stimulating effects were related to not only the category of MS, but also the content of MS. The For/CPCs had a good angiogenic property but their initial setting times were beyond 60 min. The Dio/CPCs showed the lowest biological performance among the three groups of MS/CPCs due to the lower ion release (Si and Mg). The Ake was the ideal modifier that could provide CPC with appropriate physicochemical properties, better osteogenesis and angiogenesis. Simultaneously, a higher addition (10 wt%) of akermanite resulted in the best potential to bone regeneration. Taken together, this research provides an effective approach to improve the overall performance of CPC, and 10Ake/CPC is of great promising prospect in bone repair.  相似文献   
8.
Recently, the graphite based heterogeneous photocatalysts has attained tremendous research attention in various environmental applications. Among them, the graphitic carbon nitride (g-C3N4) is categorized as a unique solar active particle with its outstanding intrinsic properties i.e., adequate band configuration, excellent light absorptivity and thermo-physical durability, which make it highly useful and reliable for revenue transformation and ecological concerns. Considering the intrinsic potential of g-C3N4 in photocatalysis, so far, no report has been done in literature for its extraordinary configuration, morphological characteristics and perspective tuning for said applications. To overcome this research gap, our primary emphasis of this review regarding photocatalysis is to provide layout as well as the advancement of visible-light-fueled materials as highly stabilized and extremely effective ones for pragmatic implementation. Thus, this existing comprehensive assessment conducts a systematic survey over visible light driven non-metal novel g-C3N4. The major advancement of this evaluation is the fabrication of well-designed nanosized g-C3N4 photocatalysts with unique configurable frameworks and compositions. Furthermore, alternative techniques in order to customize the analogue band configuration and noticeable cultivation such as metal (cation), nonmetal (anion) doping, worthy metal activating, and alloy initiation with certain semiconductors are discussed in detail. In addition to this, g-C3N4 photocatalytic functionalities towards photocatalytic hydrogen evolution, CO2 photoreduction, biological metal ions deterioration as well as bacterial sanitization are also presented and discussed in detail. Therefore, we believe that such a pivotal compact assessment can provide a roadmap in several perspectives on the currently underway obstacles in the innovation of effective g-C3N4 catalytic design processes. Moreover, this critical assessment will ultimately serve as a useful supplement in the research area of g-C3N4 nanosized photocatalysts and for the researchers working on its key aspects in diverse range of natural, chemistry, engineering and environmental applications.  相似文献   
9.
In this work, drying of bodies prepared by gelcasting fine submicrometre-sized zirconia particles was studied and a drying process for defect-free bodies with large cross-sections was proposed. It was found that the cracking of large bodies could be prevented by reducing the monomer content and using appropriate non-volatile cosolvents. Glycerol and polyethylene glycols with different molecular weights were used as non-volatile cosolvents in aqueous ceramic suspensions. The complex effects of the individual cosolvents on the gelcasting process and, in particular, on the drying step were investigated and explained. The applicability of individual cosolvents for the gelcasting process were discussed and their optimal use was indicated.  相似文献   
10.
The ways in which environmental priorities are framed are varied and influenced by political forces. One technological advance--the proliferation of government open data portals (ODPs)--has the potential to improve governance through facilitating access to data. Yet it is also known that the data hosted on ODPs may simply reflect the goals and interests of multiple levels of political power. In this article, I use traditional statistical correlation and regression techniques along with newer natural language processing and machine learning algorithms to analyze the corpus of datasets hosted on government ODPs (total: 49,066) to extract patterns that relate scales of governance and political liberalism/conservatism to the priorities and meaning attached to environmental issues. I find that state-level and municipal-level ODPs host different categories of environmental datasets, with municipal-level ODPs generally hosting more datasets pertaining to services and amenities and state-level ODPs hosting more datasets pertaining to resource protection and extraction. Stronger trends were observed for the influences of political conservatism/liberalism among state-level ODPs than for municipal-level ODPs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号