首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13627篇
  免费   1680篇
  国内免费   1762篇
电工技术   109篇
技术理论   1篇
综合类   1148篇
化学工业   1274篇
金属工艺   521篇
机械仪表   246篇
建筑科学   1071篇
矿业工程   2779篇
能源动力   686篇
轻工业   260篇
水利工程   542篇
石油天然气   4844篇
武器工业   3篇
无线电   399篇
一般工业技术   981篇
冶金工业   351篇
原子能技术   96篇
自动化技术   1758篇
  2024年   47篇
  2023年   372篇
  2022年   455篇
  2021年   598篇
  2020年   691篇
  2019年   683篇
  2018年   568篇
  2017年   581篇
  2016年   826篇
  2015年   819篇
  2014年   1000篇
  2013年   1133篇
  2012年   1424篇
  2011年   1388篇
  2010年   1119篇
  2009年   1091篇
  2008年   627篇
  2007年   818篇
  2006年   643篇
  2005年   377篇
  2004年   262篇
  2003年   187篇
  2002年   173篇
  2001年   132篇
  2000年   114篇
  1999年   105篇
  1998年   85篇
  1997年   53篇
  1996年   60篇
  1995年   60篇
  1994年   52篇
  1993年   39篇
  1992年   31篇
  1991年   44篇
  1990年   30篇
  1989年   25篇
  1988年   36篇
  1987年   95篇
  1986年   94篇
  1985年   21篇
  1984年   18篇
  1983年   17篇
  1982年   12篇
  1981年   16篇
  1980年   18篇
  1979年   19篇
  1978年   5篇
  1977年   4篇
  1976年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(9):12281-12290
Following the rapid growth of lightning technology, the development of red-emitting phosphors is effective for improving color temperature and color rendering index for w-LEDs devices. Herein, a single phased garnet phosphor with cation and polyhedron substitution modification was firstly prepared. For Mg3Gd2Ge3O12: Bi3+, Eu3+, the intensity has been remarkably improved by about 16% compared to the one without Bi3+ sensitization. The energy transfer mechanism is identified in this work. Based on cation and polyhedron substitution strategies, novel phosphors with different compositions were obtained and further modified the PL properties. With Lu3+ substitution, the bond lengths between Bi3+ ion and anion ligands are decreased and the site symmetry has been strengthened, which leads to a 21 nm blue shift when Lu3+ totally replaced Gd3+ ions. In addition, Lu3+ and [SiO4] substitution strategies both effectively increased symmetric rigid structure, which leads to a significant improvement in thermal stability, indicating the samples own great potential in optical applications This work provides a new insight to synthesis red-emitting phosphors for warm white-LEDs.  相似文献   
2.
This work focuses on identifying the rate-determining step of oxygen transport through La0.5Sr0.5Fe0.7Ga0.3O3-δ membranes with symmetric and asymmetric architectures. The best oxygen semipermeation fluxes are 3.4 10−3 mol. m-2.s-1 and 6.3 10−3 mol. m-2.s-1 at 900 °C for the symmetric membrane and asymmetric membrane with a modified surface. The asymmetric membrane with a modified surface leads to an increase of approximately 7 times the oxygen flux compared to that obtained with the La0.5Sr0.5Fe0.7Ga0.3O3-δ dense membrane without surface modification. This work also shows that the oxygen flux is mainly governed by gaseous oxygen diffusion through the porous support of asymmetric La0.5Sr0.5Fe0.7Ga0.3O3-δ membranes.  相似文献   
3.

This paper presents a case study of an optimized combination of mine water control, treatment, utilization and reinjection to achieve the zero discharge of mine water. Mine water has been considered a hazard and pollution source during underground mining, so most mining enterprises directly discharge mine water to the surface after simple treatment, resulting in a serious waste of water. Moreover, discharging a large amount of mine water can destroy the original groundwater balance and cause serious environmental problems, such as surface subsidence, water resource reduction and contamination, and adverse impacts on biodiversity. The Zhongguan iron mine is in the major groundwater source area of the Hundred Springs of Xingtai, which is an area with a high risk of potential subsidence. To optimize the balance between mining and groundwater resources, a series of engineering measures was adopted by the Zhongguan iron mine to realize mine water control, treatment, utilization, and reinjection. The installation of a closed grout curtain has greatly reduced the water yield of deep stopes in the mine; the effective sealing efficiency reaches 80%. Nanofiltration membrane separation was adopted to treat the highly mineralized mine water; the quality of the produced water meets China’s recommended class II groundwater standard. Low-grade heat energy from the mine water is collected and utilized through a water-source heat pump system. Finally, zero mine water discharge is realized through mine water reinjection. This research provides a beneficial reference for mines with similar geological and hydrogeological conditions to achieve environmentally sustainable mining.

  相似文献   
4.
Independent hydrogen production from petrochemical wastewater containing mono-ethylene glycol (MEG) via anaerobic sequencing batch reactor (ASBR) was extensively assessed under psychrophilic conditions (15–25 °C). A lab-scale ASBR was operated at pH of 5.50, and different organic loading rates (OLR) of 1.00, 1.67, 2.67, and 4.00 gCOD/L/d. The hydrogen yield (HY) progressed from 134.32 ± 10.79 to 189.09 ± 22.35 mL/gMEGinitial at increasing OLR from 1.00 to 4.00 gCOD/L/d. The maximum hydrogen content of 47.44 ± 3.60% was achieved at OLR of 4.0 gCOD/L/d, while methane content remained low (17.76 ± 1.27% at OLR of 1.0 gCOD/L/d). Kinetic studies using four different mathematical models were conducted to describe the ASBR performance. Furthermore, two batch-mode experiments were performed to optimize the nitrogen supplementation as a nutrient (C/N ratio), and assess the impact of salinity (as gNaCl/L) on hydrogen production. HY substantially dropped from 62.77 ± 4.09 to 6.02 ± 0.39 mL/gMEGinitial when C/N ratio was increased from 28.5 to 114.0. Besides, the results revealed that salinity up to 10.0 gNaCl/L has a relatively low inhibitory impact on hydrogen production. Eventually, the cost/benefit analysis showed that environmental and energy recovery revenues from ASBR were optimized at OLR of 4.0 gCOD/L/d (payback period of 7.13 yrs).  相似文献   
5.
Structural failures (bridge or building collapses) and geohazards (landslides, ground subsidence or earthquakes) are worldwide problems that often lead to significant economic and loss of life. Monitoring the deformation of both natural phenomena and man-made structures is a major key to assessing structural dynamic responses. Actually, this monitoring process is under real-time demand for developing warning and alert systems.One of the most used techniques for real-time deformation monitoring is the Global Navigation Satellite System (GNSS) real-time procedure, where the relative positioning approach, using a well-known reference station, has been applied.This study was conducted to evaluate the actual quality of the real-time kinematic Precise Point Positioning (PPP) GNSS solution for deformation monitoring, where it can be concluded that a promise tool is under development and should be taken into account on actual and near future real-time deformation monitoring studies and applications.  相似文献   
6.

Floods are common and recurring natural hazards which damages is the destruction for society. Several regions of the world with different climatic conditions face the challenge of floods in different magnitudes. Here we estimate flood susceptibility based on Analytical neural network (ANN), Deep learning neural network (DLNN) and Deep boost (DB) algorithm approach. We also attempt to estimate the future rainfall scenario, using the General circulation model (GCM) with its ensemble. The Representative concentration pathway (RCP) scenario is employed for estimating the future rainfall in more an authentic way. The validation of all models was done with considering different indices and the results show that the DB model is most optimal as compared to the other models. According to the DB model, the spatial coverage of very low, low, moderate, high and very high flood prone region is 68.20%, 9.48%, 5.64%, 7.34% and 9.33% respectively. The approach and results in this research would be beneficial to take the decision in managing this natural hazard in a more efficient way.

  相似文献   
7.
Crude oil is one of the most important energy sources for the development of the national economy. The regions along the Belt and Road are rich in crude oil resources. As the Belt and Road Initiative (B&R Initiative) progresses and develops further, an increasing numbers of countries are participating, which thus increases trade cooperation and changes the pattern of crude oil trade among countries along the Belt and Road (B&R countries). This change will have various impacts on the economies of different countries. Based on the complex network and econometric theory, we study the impact of crude oil trade pattern changes of the B&R countries on each country's GDP. We obtained the following results: (1) The impact of national trade influence on GDP was significant and positive, particularly after the initiative was proposed. (2) The centrality of the country's role in the trade network had a significant and favorable impact on GDP, but it was weakened after the initiative was introduced. (3) The impact of the country's import risk in the network on GDP was negative. (4) For countries with different economic levels, changes in the role of national trade had various effects on their GDPs.  相似文献   
8.
Silicon nitride (Si3N4) based ceramics were fabricated with β-SiAlON and Si3N4 powders synthesized by combustion synthesis method via power injection molding (PIM). In the PIM process, the solids loading for each material was first determined from the results of the torque rheometer experiment. The mixing process was repeated to produce the homogeneous feedstock, and homogeneity of feedstocks was evaluated by observing the shear viscosity with time at a constant shear rate. The rheological behavior of feedstocks was investigated using capillary rheometer. It found that both feedstocks have no problem in injection molding. The binder decomposition behavior was also investigated, and a wax-polymer binder system was nearly removed by the optimized solvent and thermal debinding processes. Thereafter, the debound samples were sintered at 1750 and 1800 °C for 4 h in nitrogen atmosphere. Regardless of sintering temperature, the relative density of higher than about 96% was achieved. When comparing mechanical properties including bending strength, Vickers hardness and fracture toughness, Si3N4 with 2 wt% Y2O3 and 5 wt% Al2O3 (Si3N4+2Y5A) had higher values than β-SiAlON with 4 wt% Y2O3 (β-SiAlON+4Y) regardless of sintering temperature. It was supported by observing the microstructures of the plasma-etched samples.  相似文献   
9.
《Ceramics International》2021,47(23):33057-33063
In this study, a chelating agent is introduced to prepare CeO2–ZrO2 nano-composite through a precipitation process. The physicochemical properties of the oxide precursors, nano composite materials are strongly dependent on the preparation method and whether a chelating agent is used. Adding an appropriate quantity of chelating agent SO42− can facilitate thermal stability and phase structure uniformity of CeO2–ZrO2 mixed oxides. The calculation results showed that the Gibbs free energy of chelating complex of [ZrSO4]2+ (ΔG = −127.2469 kJ/mol) is higher than the [Ce(III)SO4]+ (ΔG = -29.8279 kJ/mol). The precipitation chemical potential of Zr4+ moves close to the precipitation chemical potential of Ce3+. The novel and low-cost chelating precipitation method can modify the homogeneity of the compounds at the atomic scale, which can offer a powerful opportunity for, and provide direction in, the design of materials with exceptional properties.  相似文献   
10.
TiO2 is an ideal substitute to ZrSiO4 ceramic opacifier, yet it is limited to application because of the undesirable yellowing resulting from rutile formation. Herein, the SiO2-CaCO3-TiO2 composite opacifier (Si-Ca-Ti) was constructed. The glaze used Si-Ca-Ti presents a superior opacification performance than ZrSiO4 opacified glaze without causing yellowing, showing L*, a*, b* values of 94.81, -0.67 and 3.23. By comparison, the glaze using SiO2, CaCO3, and TiO2 mixture shows lower opacification and yellowish surface with L* and b* values of 92.99 and 5.36. It is revealed that there is a close interface bonding among SiO2, CaCO3 and TiO2 in Si-Ca-Ti, which promotes their combination reaction to generate opacification phase titanite and inhibit rutile formation when sintering, resulting in the white surface and opacification improvement of the glaze. This study proposes a green and efficient strategy to achieve white and highly opacified glaze for sanitary ceramics, exhibiting good application prospect.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号