首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136513篇
  免费   15372篇
  国内免费   6326篇
电工技术   57966篇
技术理论   14篇
综合类   11127篇
化学工业   4102篇
金属工艺   2617篇
机械仪表   6882篇
建筑科学   12472篇
矿业工程   3175篇
能源动力   8922篇
轻工业   1480篇
水利工程   6546篇
石油天然气   2021篇
武器工业   914篇
无线电   17835篇
一般工业技术   4931篇
冶金工业   2439篇
原子能技术   2610篇
自动化技术   12158篇
  2024年   376篇
  2023年   1455篇
  2022年   2925篇
  2021年   3568篇
  2020年   4081篇
  2019年   3201篇
  2018年   3001篇
  2017年   4234篇
  2016年   4790篇
  2015年   5576篇
  2014年   10524篇
  2013年   8050篇
  2012年   11375篇
  2011年   12053篇
  2010年   9170篇
  2009年   9399篇
  2008年   8875篇
  2007年   10394篇
  2006年   8995篇
  2005年   7253篇
  2004年   5972篇
  2003年   4864篇
  2002年   3681篇
  2001年   3141篇
  2000年   2544篇
  1999年   1886篇
  1998年   1308篇
  1997年   1052篇
  1996年   992篇
  1995年   761篇
  1994年   647篇
  1993年   426篇
  1992年   343篇
  1991年   214篇
  1990年   187篇
  1989年   184篇
  1988年   114篇
  1987年   83篇
  1986年   58篇
  1985年   68篇
  1984年   90篇
  1983年   87篇
  1982年   68篇
  1981年   27篇
  1980年   15篇
  1979年   18篇
  1978年   18篇
  1977年   10篇
  1976年   6篇
  1959年   13篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
为了减小传统的最差情况设计方法引入的电压裕量,提出了一种变化可知的自适应电压缩减(AVS)技术,通过调整电源电压来降低电路功耗.自适应电压缩减技术基于检测关键路径的延时变化,基于此设计了一款预错误原位延时检测电路,可以检测关键路径延时并输出预错误信号,进而控制单元可根据反馈回的预错误信号的个数调整系统电压.本芯片采用SMIC180 nm工艺设计验证,仿真分析表明,采用自适应电压缩减技术后,4个目标验证电路分别节省功耗12.4%,11.3%,10.4%和11.6%.  相似文献   
32.
This paper reviews recent studies, that not only includes both experiments and modeling components, but celebrates a close coupling between these techniques, in order to provide insights into the plasticity and failure of polycrystalline metals. Examples are provided of studies across multiple-scales, including, but not limited to, density functional theory combined with atom probe tomography, molecular dynamics combined with in situ transmission electron miscopy, discrete dislocation dynamics combined with nanopillars experiments, crystal plasticity combined with digital image correlation, and crystal plasticity combined with in situ high energy X-ray diffraction. The close synergy between in situ experiments and modeling provides new opportunities for model calibration, verification, and validation, by providing direct means of comparison, thus removing aspects of epistemic uncertainty in the approach. Further, data fusion between in situ experimental and model-based data, along with data driven approaches, provides a paradigm shift for determining the emergent behavior of deformation and failure, which is the foundation that underpins the mechanical behavior of polycrystalline materials.  相似文献   
33.
我国的军工科研所成立于上世纪,它以军工项目的科研、预研为主,为我国的国防军工提供研发产品。伴随着我国经济实力的增强和科技军事力量的增长,军工科研院所也转变了原有的工业专属性质,走上了军民两用、寓军于民的道路,并在时代的进步中成为了我国先进装备制造业的重要科研力量和科技创新支柱。凸现军事工业“高、精、尖”的特点,以项目管理的优化为具体策略进行军工科研开发工作。  相似文献   
34.
以用户为中心的可见光通信协作传输是近年来出现的新架构,这导致虚拟小区之间出现重叠。为避免导频污染问题,每个虚拟小区中的光接入点(AP)或者虚拟小区中选择相同AP的用户发送的训练序列应该是正交的。针对可见光通信中以用户为中心的协作网络,研究训练资源的正交分配问题,提出了一种新的导频分配算法,联合导频分配和用户选择问题,以期最大限度地增加虚拟小区内可被接入的用户数。分析和仿真结果表明,该导频分配方案可以有效改善导频污染问题,提高训练资源利用率,并且相比已有的导频分配方案,性能有所改进。  相似文献   
35.
The operational optimisation of coal-fired power units is important for saving energy and reducing losses in the electric power industry. One of the key issues is how to determine the benchmark values of the energy efficiency indexes of the units. Therefore, a new framework for determining these benchmark values is proposed, based on data mining methods. First, the energy efficiency key performance indicators (KPIs) associated with the net coal consumption rate (NCCR) were selected based on the domain knowledge. Second, the decision-making samples with minimal NCCR were acquired with the fuzzy C-means (FCM) clustering algorithm, and the corresponding clustering centres were employed as the benchmark values. Finally, based on the support vector regression (SVR) algorithm, the target values of the NCCR were obtained with the KPIs as input, and the energy saving potential was evaluated by comparing the target values with the historical values of the NCCR. An actual on-duty 1000 MW unit was taken as study unit, and the results show that the energy saving potential is remarkable when the operators adjust the KPIs based on the calculated benchmark values.  相似文献   
36.
The three-phase four-wire shunt active power filter (SAPF) was developed to suppress the harmonic currents generated by nonlinear loads, and for the compensation of unbalanced nonlinear load currents, reactive power, and the harmonic neutral current. In this work, we consider instantaneous reactive power theory (PQ theory) for reference current identification based on the following two algorithms: the classic low-pass filter (LPF) and the second-order generalized integrator (SOGI) filter. Furthermore, since an important process in SAPF control is the regulation of the DC bus voltage at the capacitor, a new controller based on the Lyapunov function is also proposed. A complete simulation of the resultant active filtering system confirms its validity, which uses the SOGI filter to extract the reference currents from the distorted line currents, compared with the traditional PQ theory based on LPF. In addition, the simulation performed also demonstrates the superiority of the proposed approach, for DC bus voltage control based on the Lyapunov function, compared with the traditional proportional-integral (PI) controller. Both novel approaches contribute towards an improvement in the overall performance of the system, which consists of a small rise and settling time, a very low or nonexistent overshoot, and the minimization of the total harmonic distortion (THD).  相似文献   
37.
Meng Wu  Hailong Li  Hongzhi Qi 《Indoor air》2020,30(3):534-543
Thermal comfort is an important factor for the design of buildings. Although it has been well recognized that many physiological parameters are linked to the state of thermal comfort or discomfort of humans, how to use physiological signal to judge the state of thermal comfort has not been well studied. In this paper, the feasibility of continuously determining feelings of personal thermal comfort was discussed by using electroencephalogram (EEG) signals in private space. In the study, 22 subjects were exposed to thermally comfortable and uncomfortably hot environments, and their EEG signals were recorded. Spectral power features of the EEG signals were extracted, and an ensemble learning method using linear discriminant analysis or support vector machine as a sub-classifier was used to build the discriminant model. The results show that an average discriminate accuracy of 87.9% can be obtained within a detection window of 60 seconds. This study indicates that it is feasible to distinguish whether a person feels comfortable or too hot in their private space by multi-channel EEG signals without interruption and suggests possibility for further applications in neuroergonomics.  相似文献   
38.
Stream ciphers based on linear feedback shift register (LFSR) are suitable for constrained environments, such as satellite communications, radio frequency identification devices tag, sensor networks and Internet of Things, due to its simple hardware structures, high speed encryption and lower power consumption. LFSR, as a cryptographic primitive, has been used to generate a maximum period sequence. Because the switching of the status bits is regular, the power consumption of the LFSR is correlated in a linear way. As a result, the power consumption characteristics of stream cipher based on LFSR are vulnerable to leaking initialization vectors under the power attacks. In this paper, a new design of LFSR against power attacks is proposed. The power consumption characteristics of LFSR can be masked by using an additional LFSR and confused by adding a new filter Boolean function and a flip-flop. The design method has been implemented easily by circuits in this new design in comparison with the others.  相似文献   
39.
(1-x)Sr0.7Pb0.15Bi0.1TiO3-xBi4Ti3O12 ((1-x)SPBT-xBIT, x = 0-0.125) bulk ceramics were developed and calcined via the solid-state method, aimed at the application of pulsed power capacitors. The phase structures, temperature stability, hysteresis loop, and discharge properties were systematically investigated. Considering both the temperature stability and dielectric properties, 0.925SPBT-0.075BIT bulk ceramics with a capacitance variation satisfying the X7R specification were developed for pulsed power capacitors. The energy storage density was 0.252 J/cm3, and the ceramics showed high temperature stability at 80 kV/cm. The discharge current waveforms of the 0.925SPBT-0.075BIT ceramics were recorded. A high discharge power density of approximately 1.01 × 108 W/kg with an 8 Ω load resistor and short discharge period of 84 ns were achieved at 50 kV/cm. The good temperature stability properties and high power density show that the 0.925SPBT-0.075BIT ceramics are well suited for pulsed power capacitors with a wide temperature range.  相似文献   
40.
The COVID-19 pandemic has disrupted the supply chain for personal protective equipment (PPE) for medical professionals, including N95-type respiratory protective masks. To address this shortage, many have looked to the agility and accessibility of additive manufacturing (AM) systems to provide a democratized, decentralized solution to producing respirators with equivalent protection for last-resort measures. However, there are concerns about the viability and safety in deploying this localized download, print, and wear strategy due to a lack of commensurate quality assurance processes. Many open-source respirator designs for AM indicate that they do not provide N95-equivalent protection (filtering 95% of SARS-CoV-2 particles) because they have either not passed aerosol generation tests or not been tested. Few studies have quantified particle transmission through respirator designs outside of the filter medium. This is concerning because several polymer-based AM processes produce porous parts, and inherent process variation between printers and materials also threaten the integrity of tolerances and seals within the printed respirator assembly. No study has isolated these failure mechanisms specifically for respirators. The goal of this paper is to measure particle transmission through printed respirators of different designs, materials, and AM processes. The authors compare the performance of printed respirators to N95 respirators and cloth masks. Respirators in this study printed using desktop- and industrial-scale fused filament fabrication processes and industrial-scale powder bed fusion processes were not sufficiently reliable for widespread distribution and local production of N95-type respiratory protection. Even while assuming a perfect seal between the respirator and the user’s face, although a few respirators provided >90% efficiency at the 100−300 nm particle range, almost all printed respirators provided <60% filtration efficiency. Post-processing procedures including cleaning, sealing surfaces, and reinforcing the filter cap seal generally improved performance, but the printed respirators showed similar performance to various cloth masks. The authors further explore the process-driven aspects leading to low filtration efficiency. Although the design/printer/material combination dictates the AM respirator performance, the identified failure modes originate from system-level constraints and are therefore generalizable across multiple AM processes. Quantifying the limitations of AM in producing N95-type respiratory protective masks advances understanding of AM systems toward the development of better part and machine designs to meet the needs of reliable, functional, end-use parts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号