首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   419478篇
  免费   39942篇
  国内免费   24841篇
电工技术   60191篇
技术理论   28篇
综合类   39896篇
化学工业   43899篇
金属工艺   17321篇
机械仪表   33979篇
建筑科学   27571篇
矿业工程   13058篇
能源动力   13678篇
轻工业   18206篇
水利工程   8840篇
石油天然气   13999篇
武器工业   5588篇
无线电   50018篇
一般工业技术   31577篇
冶金工业   12119篇
原子能技术   4243篇
自动化技术   90050篇
  2024年   950篇
  2023年   4572篇
  2022年   8147篇
  2021年   12547篇
  2020年   10795篇
  2019年   9022篇
  2018年   8718篇
  2017年   12012篇
  2016年   14524篇
  2015年   16577篇
  2014年   25747篇
  2013年   24144篇
  2012年   29492篇
  2011年   31318篇
  2010年   24626篇
  2009年   25456篇
  2008年   25488篇
  2007年   31532篇
  2006年   28871篇
  2005年   25118篇
  2004年   20435篇
  2003年   18501篇
  2002年   14272篇
  2001年   11792篇
  2000年   9907篇
  1999年   7805篇
  1998年   5783篇
  1997年   4693篇
  1996年   4148篇
  1995年   3616篇
  1994年   3034篇
  1993年   2234篇
  1992年   1847篇
  1991年   1270篇
  1990年   1019篇
  1989年   903篇
  1988年   614篇
  1987年   397篇
  1986年   299篇
  1985年   299篇
  1984年   279篇
  1983年   209篇
  1982年   182篇
  1981年   173篇
  1980年   131篇
  1979年   89篇
  1978年   68篇
  1977年   64篇
  1976年   61篇
  1962年   69篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
51.
为缓解我国水、能源和粮食资源紧张问题,促进资源可持续利用,构建水-能源-粮食系统,利用耦合协调度模型对我国的30个省(自治区、直辖市)进行测算,并利用空间杜宾模型分析主要影响因素。结果表明:2003—2017年,我国能源、粮食评价[JP]指数高于水资源评价指数,系统综合评价指数逐年递增;大部分省份耦合协调度处于初级协调水平且呈现逐年上升的态势,个别省份耦合协调度濒临失调;耦合协调度空间自相关性较强,虽有明显波动,但是呈现逐年加强的态势;影响耦合协调度的主要因素有从业人口数、固定资产投资额、人均生产总值、人口总数、[JP]文盲人口占比、工业污染排放、城镇化。  相似文献   
52.
A climate neutral energy system in Germany will most likely require green hydrogen. Two important factors, that determine whether the hydrogen will be imported or produced locally from renewable energy are still uncertain though - the import price for green hydrogen and the upper limit for photovoltaic installations. To investigate the impact of these two factors, the authors calculate cost optimized climate neutral energy systems while varying the import price from 1.25 €/kg to 5 €/kg with unlimited import volume and the photovoltaic limit from 300 GW to unlimited. In all scenarios, hydrogen plays a significant role. At a medium import price of 3.75 €/kg and photovoltaic limits of 300–900 GW the hydrogen supply is around 1200 to 1300 TWh with import shares varying from 60 to 85%. In most scenarios the electrolysis profile is highly correlated with the photovoltaic power, which leads to full load hours of 1870 h–2770 h.  相似文献   
53.
54.
Naringin (NAR), a major flavanone (FVA) glycoside, is a component of food mainly obtained from grapefruit. We used NAR as a food additive to improve the solubility and permeability of hydrophobic polyphenols used as supplements in the food industry. The spray-dried particles (SDPs) of NAR alone show an amorphous state with a glass transition temperature (Tg) at 93.2 °C. SDPs of hydrophobic polyphenols, such as flavone (FVO), quercetin (QCT), naringenin (NRG), and resveratrol (RVT) were prepared by adding varying amounts of NAR. All SDPs of hydrophobic polyphenols with added NAR were in an amorphous state with a single Tg, but SDPs of hydrophobic polyphenols without added NAR showed diffraction peaks derived from each crystal. The SDPs with NAR could keep an amorphous state after storage at a high humidity condition for one month, except for SDPs of RVT/NAR. SDPs with NAR enhanced the solubility of hydrophobic polyphenols, especially NRG solubility, which was enhanced more than 9 times compared to NRG crystal. The enhanced solubility resulted in the increased membrane permeability of NRG. The antioxidant effect of the hydrophobic NRG was also enhanced by the synergetic effect of NAR. The findings demonstrated that NAR could be used as a food additive to enhance the solubility and membrane permeability of hydrophobic polyphenols.  相似文献   
55.
Endoplasmic reticulum (ER) stress response is an adaptive program to cope with cellular stress that disturbs the function and homeostasis of ER, which commonly occurs during cancer progression to late stage. Late-stage cancers, mostly requiring chemotherapy, often develop treatment resistance. Chemoresistance has been linked to ER stress response; however, most of the evidence has come from studies that correlate the expression of stress markers with poor prognosis or demonstrate proapoptosis by the knockdown of stress-responsive genes. Since ER stress in cancers usually persists and is essentially not induced by genetic manipulations, we used low doses of ER stress inducers at levels that allowed cell adaptation to occur in order to investigate the effect of stress response on chemoresistance. We found that prolonged tolerable ER stress promotes mesenchymal–epithelial transition, slows cell-cycle progression, and delays the S-phase exit. Consequently, cisplatin-induced apoptosis was significantly decreased in stress-adapted cells, implying their acquisition of cisplatin resistance. Molecularly, we found that proliferating cell nuclear antigen (PCNA) ubiquitination and the expression of polymerase η, the main polymerase responsible for translesion synthesis across cisplatin-DNA damage, were up-regulated in ER stress-adaptive cells, and their enhanced cisplatin resistance was abrogated by the knockout of polymerase η. We also found that a fraction of p53 in stress-adapted cells was translocated to the nucleus, and that these cells exhibited a significant decline in the level of cisplatin-DNA damage. Consistently, we showed that the nuclear p53 coincided with strong positivity of glucose-related protein 78 (GRP78) on immunostaining of clinical biopsies, and the cisplatin-based chemotherapy was less effective for patients with high levels of ER stress. Taken together, this study uncovers that adaptation to ER stress enhances DNA repair and damage tolerance, with which stressed cells gain resistance to chemotherapeutics.  相似文献   
56.
Small interfering RNA (siRNA) can effectively silence target genes through Argonate 2 (Ago2)-induced RNA interference (RNAi). It is very important to control siRNA activity in both spatial and temporal modes. Among different masking strategies, photocaging can be used to regulate gene expression through light irradiation with spatiotemporal and dose-dependent resolution. Many different caging strategies and caging groups have been reported for light-activated siRNA gene silencing. Herein, we describe a novel caging strategy that increases the blocking effect of RISC complex formation/process through host/guest (including ligand/receptor) interactions, thereby enhancing the inhibition of caged siRNA activity until light activation. This strategy can be used as a general approach to design caged siRNAs for the photomodulation of gene silencing of exogenous and endogenous genes.  相似文献   
57.
Leucine-rich repeat kinase 2 (LRRK2) is a major causative gene of late-onset familial Parkinson’s disease (PD). The suppression of kinase activity is believed to confer neuroprotection, as most pathogenic variants of LRRK2 associated with PD exhibit increased kinase activity. We herein report a novel LRRK2 variant—p.G2294R—located in the WD40 domain, detected through targeted gene-panel screening in a patient with familial PD. The proband showed late-onset Parkinsonism with dysautonomia and a good response to levodopa, without cognitive decline or psychosis. Cultured cell experiments revealed that p.G2294R is highly destabilized at the protein level. The LRRK2 p.G2294R protein expression was upregulated in the patient’s peripheral blood lymphocytes. However, macrophages differentiated from the same peripheral blood showed decreased LRRK2 protein levels. Moreover, our experiment indicated reduced phagocytic activity in the pathogenic yeasts and α-synuclein fibrils. This PD case presents an example wherein the decrease in LRRK2 activity did not act in a neuroprotective manner. Further investigations are needed in order to elucidate the relationship between LRRK2 expression in the central nervous system and the pathogenesis caused by altered LRRK2 activity.  相似文献   
58.
When planning large-scale 100% renewable energy systems (RES) for the year 2050, the system capacity is usually oversized for better supply-demand matching of electrical energy since solar and wind resources are highly intermittent. This causes excessive excess energy that is typically dissipated, curtailed, or sold directly. The public literature shows a lack of studies on the feasibility of using this excess for country-scale co-generation. This study presents the first investigation of utilizing this excess to generate green hydrogen gas. The concept is demonstrated for Jordan using three solar photovoltaic (PV), wind, and hybrid PV-wind RESs, all equipped with Lithium-Ion battery energy storage systems (ESSs), for hydrogen production using a polymer electrolyte membrane (PEM) system. The results show that the PV-based system has the highest demand-supply fraction (>99%). However, the wind-based system is more favorable economically, with installed RES, ESS, and PEM capacities of only 23.88 GW, 2542 GWh, and 20.66 GW. It also shows the highest hydrogen annual production rate (172.1 × 103 tons) and the lowest hydrogen cost (1.082 USD/kg). The three systems were a better option than selling excess energy directly, where they ensure annual incomes up to 2.68 billion USD while having payback periods of as low as 1.78 years. Furthermore, the hydrogen cost does not exceed 2.03 USD/kg, which is significantly lower than the expected cost of hydrogen (3 USD/kg) produced using energy from fossil fuel-based systems in 2050.  相似文献   
59.
Nowadays, oil pollution has become more serious, which causes great threats both to the ecological environment and human life. In this study, a novel type of multifunctional deacetylated cellulose acetate/polyurethane (d-MCA:MTPU) composite nanofiber membranes for oil/water separation are successfully fabricated by electrospinning, which show super-amphiphilicity in air, super-hydrophilicity in oil, and oleophobicity in water. All the d-MCA:MTPU composite nanofiber membranes with different mass ratios can be used as water-removing, oil-removing, and emulsion separation substance only by gravity driving force. The highest separation flux for water and oil reaches up to 37 000 and 74 000 L m−2 h−1, respectively, and all the separation efficiencies are more than 99%. They have outstanding comprehensive mechanics performance, which can be controlled by simply adjusting the mass ratios. They show excellent antifouling and self-cleaning ability, endowing powerful cyclic stability and reusability. Those results show that d-MCA:MTPU composite nanofiber membranes have great application prospects in oil/water separation.  相似文献   
60.
《Ceramics International》2021,47(22):31920-31926
The Sr and Ba bearing Tl-1212 phase, Tl(Ba,Sr)CaCu2O7 is an interesting superconductor. The Sr only bearing TlSr2CaCu2O7 is not easily prepared in the superconducting form. The Ba only bearing TlBa2CaCu2O7 on the other hand does not show improvement in the transition temperature with elemental substitution. In this work the influence of multivalent Se (non-metal) and Te (metalloid) substitutions at the Tl-site of Tl1-xMx(Ba,Sr)CaCu2O7 (M = Se or Te) superconductors for x = 0–0.6 was studied. The samples were prepared via the conventional solid-state reaction method. XRD patterns showed a single Tl-1212 phase for x = 0 and 0.1 Se substituted samples. The critical current density at the peak temperature, Tp of the imaginary (χ”) part of the AC susceptibility (χ = χ’ +χ”), Jc-inter(Tp) for all samples was between 15 and 21 A cm−2. The highest superconducting transition temperature was shown by the x = 0.3 Se-substituted sample (Tc-onset = 104 K, Tc-zero = 89 K, Tcχ’ = 104 K and Tp = 80 K). Te suppressed the superconductivity of Tl-1212 phase. The order of highest transition temperatures are as follows: Tl1-xTex(Ba,Sr)CaCu2O7<Tl(Ba,Sr)CaCu2O7<Tl1-xSex(Ba,Sr)CaCu2O7. This work showed that Se was better than Te in improving the transition temperature and flux pinning of the Tl-1212 phase. The roles of ionic radius of Se and Te on the superconductivity of Tl(Ba,Sr)CaCu2O7 are discussed in this paper.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号