首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   144063篇
  免费   12585篇
  国内免费   8497篇
电工技术   9899篇
技术理论   2篇
综合类   10921篇
化学工业   28673篇
金属工艺   12870篇
机械仪表   10071篇
建筑科学   9021篇
矿业工程   3189篇
能源动力   5028篇
轻工业   9228篇
水利工程   1572篇
石油天然气   6592篇
武器工业   1403篇
无线电   15150篇
一般工业技术   15424篇
冶金工业   6117篇
原子能技术   1690篇
自动化技术   18295篇
  2024年   371篇
  2023年   1853篇
  2022年   2961篇
  2021年   4190篇
  2020年   3924篇
  2019年   3661篇
  2018年   3409篇
  2017年   4517篇
  2016年   4837篇
  2015年   5109篇
  2014年   7236篇
  2013年   8117篇
  2012年   9192篇
  2011年   10485篇
  2010年   8294篇
  2009年   9193篇
  2008年   8721篇
  2007年   10006篇
  2006年   9576篇
  2005年   7865篇
  2004年   6800篇
  2003年   6344篇
  2002年   5263篇
  2001年   4269篇
  2000年   3684篇
  1999年   2920篇
  1998年   2087篇
  1997年   1683篇
  1996年   1511篇
  1995年   1434篇
  1994年   1222篇
  1993年   1030篇
  1992年   856篇
  1991年   550篇
  1990年   376篇
  1989年   368篇
  1988年   233篇
  1987年   167篇
  1986年   143篇
  1985年   120篇
  1984年   95篇
  1983年   66篇
  1982年   69篇
  1981年   79篇
  1980年   44篇
  1979年   35篇
  1978年   26篇
  1977年   21篇
  1976年   29篇
  1975年   27篇
排序方式: 共有10000条查询结果,搜索用时 453 毫秒
11.
《Ceramics International》2022,48(6):8297-8305
Pure and Sn/Fe co-doped (0.2 at.% Sn and 0.6 at.% Fe, 0.6 at.% Sn and 0.2 at.% Fe, 1.0 at.% Sn and 1.0 at.% Fe) TiO2 nanoparticles were synthesized via a sol-gel method and subsequently calcined at different temperatures. Furthermore, the particles were analyzed by TG-DSC, XRD, TEM, HRTEM, EDS, SAED and UV–Vis for investigating the influences of dopant and calcination temperature on the thermal effect, composition, morphology, energy band gap (Eg) and the degradation efficiency of methyl orange (MO) under various light irradiations respectively. Results indicated that Sn/Fe co-doping inhibited the crystallization transformation from anatase to rutile phase of TiO2 and decreased the Eg. The increased calcination temperature and Sn/Fe co-doped effect brought about the abnormal grain growth of TiO2 nanoparticles. 0.6 at.% Sn/0.2 at.% Fe and 1.0 at.% Sn/1.0 at.% Fe co-doped TiO2 nanoparticles presented better photocatalytic performance than pure and 0.2 at.% Sn/0.6 at.% Fe co-doped TiO2 nanoparticles under visible light irradiation mainly due to the decreased Eg. On the contrary, 0.2 at.% Sn and 0.6 at.% Fe co-doped TiO2 nanoparticles calcined at 650 °C showed the most excellent photocatalytic performance under UV light irradiation, which was about twice as large as that of pure TiO2 possibly due to the formed hybrid structure of anatase and rutile phase as well as the h+-mediated decomposition pathway.  相似文献   
12.
Tracking control of oxygen excess ratio (OER) is crucial for dynamic performance and operating efficiency of the proton exchange membrane fuel cell (PEMFC). OER tracking errors and overshoots under dynamic load limit the PEMFC output power performance, and also could lead oxygen starvation which seriously affect the life of PEMFC. To solve this problem, an adaptive sliding mode observer based near-optimal OER tracking control approach is proposed in this paper. According to real time load demand, a dynamic OER optimization strategy is designed to obtain an optimal OER. A nonlinear system model based near-optimal controller is designed to minimize the OER tracking error under variable operation condition of PEMFC. An adaptive sliding mode observer is utilized to estimate the uncertain parameters of the PEMFC air supply system and update parameters in near-optimal controller. The proposed control approach is implemented in OER tracking experiments based on air supply system of a 5 kW PEMFC test platform. The experiment results are analyzed and demonstrate the efficacy of the proposed control approach under load changes, external disturbances and parameter uncertainties of PEFMC system.  相似文献   
13.
ABSTRACT

It is important to perform neutron transport simulations with accurate nuclear data in the neutronics design of a fusion reactor. However, absolute values of large-angle scattering cross sections vary among nuclear data libraries even for well-examined nuclide of iron. Benchmark experiments focusing on large-angle scattering cross sections were thus performed to confirm the correctness of nuclear data libraries. The series benchmark experiments were performed at a DT neutron source facility, OKTAVIAN of Osaka University, Japan, by the unique experimental system established by the authors’ group, which can extract only the contribution of large-angle scattering reactions. This system consists of two shadow bars, target plate (iron), and neutron detector (niobium). Two types of shadow bars were used and four irradiations were conducted for one experiment, so that contribution of room-return neutrons was effectively removed and only large-angle scattering neutrons were extracted from the measured four Nb reaction rates. The obtained experimental results were compared with calculations for five nuclear data libraries including JENDL-4.0, JEFF.-3.3, FENDL-3.1, ENDF/B- VII, and recently released ENDF/B-VIII. It was found from the comparison that ENDF/B-VIII showed the best result, though ENDF/B-VII showed overestimation and others are in large underestimation at 14 MeV.  相似文献   
14.
To evaluate the separate impacts on human health and establish effective control strategies, it is crucial to estimate the contribution of outdoor infiltration and indoor emission to indoor PM2.5 in buildings. This study used an algorithm to automatically estimate the long-term time-resolved indoor PM2.5 of outdoor and indoor origin in real apartments with natural ventilation. The inputs for the algorithm were only the time-resolved indoor/outdoor PM2.5 concentrations and occupants’ window actions, which were easily obtained from the low-cost sensors. This study first applied the algorithm in an apartment in Tianjin, China. The indoor/outdoor contribution to the gross indoor exposure and time-resolved infiltration factor were automatically estimated using the algorithm. The influence of outdoor PM2.5 data source and algorithm parameters on the estimated results was analyzed. The algorithm was then applied in four other apartments located in Chongqing, Shenyang, Xi'an, and Urumqi to further demonstrate its feasibility. The results provided indirect evidence, such as the plausible explanations for seasonal and spatial variation, to partially support the success of the algorithm used in real apartments. Through the analysis, this study also identified several further development directions to facilitate the practical applications of the algorithm, such as robust long-term outdoor PM2.5 monitoring using low-cost light-scattering sensors.  相似文献   
15.
Cell surface and secreted proteins provide essential functions for multicellular life. They enter the endoplasmic reticulum (ER) lumen co-translationally, where they mature and fold into their complex three-dimensional structures. The ER is populated with a host of molecular chaperones, associated co-factors, and enzymes that assist and stabilize folded states. Together, they ensure that nascent proteins mature properly or, if this process fails, target them for degradation. BiP, the ER HSP70 chaperone, interacts with unfolded client proteins in a nucleotide-dependent manner, which is tightly regulated by eight DnaJ-type proteins and two nucleotide exchange factors (NEFs), SIL1 and GRP170. Loss of SIL1′s function is the leading cause of Marinesco-Sjögren syndrome (MSS), an autosomal recessive, multisystem disorder. The development of animal models has provided insights into SIL1′s functions and MSS-associated pathologies. This review provides an in-depth update on the current understanding of the molecular mechanisms underlying SIL1′s NEF activity and its role in maintaining ER homeostasis and normal physiology. A precise understanding of the underlying molecular mechanisms associated with the loss of SIL1 may allow for the development of new pharmacological approaches to treat MSS.  相似文献   
16.
The conversion of food industry by-products to compounds with high added value is nowadays a significant topic, for social, environmental, and economic reasons. In this paper, calcium phosphate-based materials were obtained from black scabbardfish (Aphanopus carbo) bones and grey triggerfish (Balistes capriscus) skin, which are two of the most abundant fish by-products of Madeira Island. Different calcination temperatures between 400 and 1000°C were employed. Materials obtained from calcination of bones of black scabbard fish were composed by homogeneous mixtures of hydroxyapatite (Ca10(PO4)6(OH)2, HAp) and β-tricalcium phosphate (β-Ca3(PO4)2, β-TCP). Because of the high biocompatibility of HAp and the good resorbability of β-TCP, these natural biphasic materials could be very relevant in the field of biomaterials, as bone grafts. The ratio between HAp and β-TCP in the biphasic compound was dependent on the calcination temperature. Differently, the material obtained from skin of grey triggerfish contained HAp as the main phase, together with small amounts of other mineral phases, such as halite and rhenanite, which are known to enhance osteogenesis when used as bone substitutes. In both cases, the increase of calcination temperature led to an increase in the particles size with a consequent decrease in their specific surface area. These results demonstrate that from the fish by-products of the most consumed fishes in Madeira Island it is possible to obtain bioceramic materials with tunable composition and particle morphology, which could be promising materials for the biomedical field.  相似文献   
17.
《Ceramics International》2022,48(7):9413-9425
Artificial bone fillers are essentially required for repairing bone defects, and developing the fillers with synergistic biocompatibility and anti-bacterial activity persists as one of the critical challenges. In this work, a new agarose/gadolinium-doped hydroxyapatite filler with three-dimensional porous structures was fabricated. For the composite filler, agarose provides three-dimensional skeleton and endows porosity, workability, and high specific surface area, hydroxyapatite (HA) offers the biocompatibility, and the rare earth element gadolinium (Gd) acts as the antibacterial agent. X-ray photoelectron spectroscopy detection showed the doping of Gd in HA lattice with the formation of Gd-HA interstitial solid solution. Attenuated total reflection Fourier transform infrared spectroscopy imaging suggested chemical interactions between agarose and Gd-HA, and the physical structure of agarose was tuned by the Gd-doped HA. Cytotoxicity testing and alizarin red staining experiments using mouse pro-osteoblasts (MC3T3-E1) revealed remarkable bioactivity and osteogenic properties of the composite fillers, and proliferation and growth rates of the cells increased in proportion to Gd content in the composites. Antibacterial testing using the gram-positive bacteria S. aureus and the gram-negative bacteria E. coli indicated promising antibacterial properties of the fillers. Meanwhile, the antibacterial properties of composite filles were enhanced with the increase of Gd content. The antibacterial fillers with porous structure and excellent physicomechanical properties show inspiring potential for bone defect repair.  相似文献   
18.
《Ceramics International》2022,48(12):16923-16932
This paper offers a new way of testing the ablation property of material under an oxyacetylene torch using a thin-blade specimen, which costs much less time to reach the maximum temperature and provides a harsh turbulence fluid field that's closer to reality. The thin-blade specimen experiences a higher turbulent intensity than the traditional disk-like specimen, leading to more efficient heat exchange. The fluid field simulation agrees with the testing results. In addition, we manage to synthesize the C/Cx-SiCy composites with the co-deposition chemical vapor infiltration (CVI) method. The C/Cx-SiCy composites exhibit a similar anti-ablation property as C/C composites and consist of enough SiC phase simultaneously, combining the advantages of both C/C composites and C/SiC composites. The thin-blade C/Cx-SiCy composites show a lower linear ablation rate (1.6 μm/s) than C/C composites (4.1 μm/s) and C/SiC composites (19.6 μm/s) during the oxyacetylene test. The glass layer formed on the surface of C/Cx-SiCy could cling to the bulk material instead of peeling off due to the high PyC content in the matrix could protect the SiO2 from blowing away.  相似文献   
19.
《Ceramics International》2022,48(1):744-753
The heat-resistance of the Cansas-II SiC/CVI-SiC mini-composites with a PyC and BN interface was studied in detail. The interfacial shear strength of the SiC/PyC/SiC mini-composites decreased from 15 MPa to 3 MPa after the heat treatment at 1500 °C for 50 h, while that of the SiC/BN/SiC mini-composites decreased from 248 MPa to 1 MPa, which could be mainly attributed to the improvement of the crystallization degree of the interface and the decomposition of the matrix. Aside from the above reasons, the larger declined fraction of the interfacial shear strength of the SiC/BN/SiC mini-composites might also be related to the gaps in the BN interface induced by the volatilization of B2O3·SiO2 phase, leading to a significant larger declined fraction of the tensile strength of the SiC/BN/SiC mini-composites due to the obvious expansion of the critical flaws on the fiber surface. Therefore, compared with the CVI BN interface, the CVI PyC interface has better heat-resistance at high temperatures up to 1500 °C due to the fewer impurities in PyC.  相似文献   
20.
With the goal to produce a hard and tough coating intended for tribological applications, CrAlN/TiSiN nanolayer coating was prepared by alternative deposition of CrAlN and TiSiN layers. In the first part of the article, a detailed study of phase composition, microstructure, and layer structure of CrAlN/TiSiN coating is presented. In the second part, its mechanical properties, fracture and tribological behavior are compared to the nanocomposite TiSiN coating. An industrial magnetron sputtering unit was used for coating deposition. X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy were used for compositional and microstructural analysis. Mechanical properties and fracture behavior were studied by instrumented indentation and focused ion beam techniques. Tribological properties were evaluated by ball-on-disk test in a linear reciprocal mode. A complex layer structure was found in the nanolayer coating. The TiSiN layers were epitaxially stabilized inside the coating which led to formation of dislocations at interfaces, to introduction of disturbances in the coating growth, and as a result, to development of fine-grained columnar microstructure. Indentation load required for the onset of fracture was twice lower for the nanolayer CrAlN/TiSiN, compared to the nanocomposite TiSiN coating. This agrees very well with their mechanical properties, with H3/E2 being twice higher for the TiSiN coating. However, the nanolayer coating experienced less severe damage, which had a strong impact on tribological behavior. A magnitude of order lower wear rate and four times lower steady state friction coefficient were found for the nanolayer coating.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号