首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8112篇
  免费   987篇
  国内免费   178篇
电工技术   417篇
综合类   448篇
化学工业   4008篇
金属工艺   285篇
机械仪表   152篇
建筑科学   396篇
矿业工程   163篇
能源动力   1130篇
轻工业   601篇
水利工程   7篇
石油天然气   159篇
武器工业   68篇
无线电   137篇
一般工业技术   699篇
冶金工业   386篇
原子能技术   18篇
自动化技术   203篇
  2024年   52篇
  2023年   119篇
  2022年   228篇
  2021年   350篇
  2020年   331篇
  2019年   283篇
  2018年   213篇
  2017年   326篇
  2016年   269篇
  2015年   276篇
  2014年   509篇
  2013年   487篇
  2012年   591篇
  2011年   666篇
  2010年   450篇
  2009年   452篇
  2008年   407篇
  2007年   553篇
  2006年   482篇
  2005年   399篇
  2004年   348篇
  2003年   291篇
  2002年   217篇
  2001年   195篇
  2000年   178篇
  1999年   127篇
  1998年   113篇
  1997年   86篇
  1996年   65篇
  1995年   40篇
  1994年   37篇
  1993年   41篇
  1992年   29篇
  1991年   9篇
  1990年   9篇
  1989年   13篇
  1988年   9篇
  1987年   5篇
  1986年   3篇
  1985年   4篇
  1984年   3篇
  1983年   1篇
  1981年   3篇
  1980年   1篇
  1976年   2篇
  1951年   5篇
排序方式: 共有9277条查询结果,搜索用时 31 毫秒
41.
以七水硫酸镁为原料、氨水为沉淀剂、选择适宜的表面活性剂。以样品XRD图中(001)面与(101)面衍射峰的相对强弱为考察指标,通过单因素实验,分别考察了反应温度、恒温反应时间、陈化时间、表面活性剂用量及氨镁摩尔比等因素对氢氧化镁样品XRD图中(001)面与(101)面衍射峰相对强弱的影响。实验结果表明,制备阻燃氩氧化镁较适宜的工艺条件为:反应温度40℃、恒温反应时间40min、陈化时间120min、表面活性剂A体积用量4ml、氨镁摩尔比6:1.  相似文献   
42.
Synergistic effects of organically modified montmorillonite (OMMT) in combination with different metal oxides (Bi2O3, Sb2O3, and MoO3) on the fire safety enhancement of the intumescent flame-retarded epoxy resins (EPs) were systematically evaluated. The results from X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses show that the OMMT and metal oxides acquire a uniform distribution in the EP matrix, and OMMT platelets exhibit a fully exfoliated state. The flammability and thermogravimetry (TG) tests show that the intumescent flame retardant (IFR)-OMMT-metal oxide ternary system can endow EPs with the higher synergistic efficiencies on the enhancement of flame retardancy, smoke suppression properties, and charring ability compared to those of IFR or IFR-OMMT system, and the synergistic efficiency is the following order: IFR/OMMT/Sb2O3 > IFR/OMMT/MoO3 > IFR/OMMT/Bi2O3. In particular, the sample, filled with 1.5 wt% OMMT, 1.5 wt% Sb2O3, and 27 wt% IFR, passes the UL94 V-0 rating and acquires the highest limiting oxygen index value of 28.5% among the samples. The IFR-OMMT-metal oxide ternary system exerts a better synergistic effect on the generation of crosslinking and aromatic structures that supply the excellent charring effect and barrier effect for the EPs, and the synergistic efficiency of IFR-OMMT-metal oxide ternary system is varied with the types of metal oxides.  相似文献   
43.
In this study, the effect of the chemical nature of different calcium (Ca)-based minerals as flame retardant additives in combination with ammonium polyphosphate (APP), in 1:1 proportions, on the flame retardancy behavior and performance of ethylene vinyl acetate copolymer was discussed. Combining APP with partly and completely hydrated calcium oxide led to superior flame-retardant function detected in mass loss calorimeter measurements with respect to the corresponding system containing carbonated calcium. This privileged character was attributed to the higher reactivity of hydrated Ca-based fillers toward APP in comparison with Ca carbonate, which induced the formation of an intumescent residue. The difference between reactivity potential of hydrated and dry Ca was demonstrated by the newly formed thermally stable species, and further evidenced by thermogravimetric analysis performed on APP/fillers blends. Moreover, the presence of more crystalline domains in the Ca/phosphorus-based compounds was evidenced by XRD analysis of the mass loss calorimeter test residues. The results of this work highlight the role of blend additive systems on the performance of flame retardancy of polymer materials.  相似文献   
44.
Polyester is widely used in household products because of its good mechanical properties and wears resistance, but polyester is easy to ignite and inclined to produce droplet, so its application range is limited. The cross-linkable magnesium hydroxide nanoparticles were incorporated into flame-retardant polyester, which enables the phosphorus-containing copolyester with thermal cross-linking and anti-meltdrop properties. The nanoparticles were achieved by in situ polymerization and acted as a nucleating agent for improving the crystalline properties of the copolyester. Furthermore, the nanoparticles also enhanced anti-meltdrop properties and reduced the heat and gas release during the combustion process of the copolyester. The maximum heat release rate and total smoke release reduced by 39.8% and 74.4% compared with pure polyester. Specifically, the combustion products of the nanoparticles and phosphorus flame retardant could act a barrier role by covering the carbon layer to isolate air and heat, thereby resulting in excellent anti-meltdrop properties. The simple modification method reported here realizes the collaborative modification of flame retardant and anti-meltdrop properties of phosphorous flame-retardant copolyesters by thermal cross-linking.  相似文献   
45.
锆及锆合金中微量铝的测定   总被引:1,自引:0,他引:1  
本文介绍在硫酸介质中,先用钽试剂-氯仿萃取分离除去锆以及钛、铁、铪等;再在pH=8.5左右,用苯萃取铝-钽试剂配合物,用稀盐酸反萃取;最后在pH=5.5—6时用铬天青S比色以测定铝的方法,确定了其测定条件。本方法准确性好,灵敏度高,测定范围为0.0025%—0.035%。  相似文献   
46.
为制备具有增强阻燃效果的皮革涂饰材料,本研究首先以天然石墨为原料,采用Hummers法制备氧化石墨烯,并采用NaBH4对其进行还原得到还原氧化石墨烯(rGO)。通过FTIR,XRD和TEM等对其进行表征。结果表明,成功制备了rGO纳米材料。随后,采用物理共混法将rGO引入天然蛋白质酪素体系,制备酪素基rGO复合乳液并将其应用于皮革涂饰,对涂饰后革样的阻燃性能、力学性能和耐干湿擦性能进行测试。结果表明,当rGO的含量为酪素体系溶质质量的0.5%时,与未含rGO的酪素体系相比,涂饰后革样的燃烧速率下降47.2%,极限氧指数(LOI)由24.2%增加至26.3%,热释放速率(HRR)下降53.1%,总热释放率(THR)也有所降低。rGO的引入对涂饰后革样的力学性能和耐干湿擦性能影响不大。  相似文献   
47.
采用端羟基聚丁二烯(HTPB)剥离层状有机蒙脱土(OMMT)为纳米片层,并与异佛尔酮二异氰酸酯(IPDI)、二羟甲基丙酸(DMPA)等单体通过原位聚合法制备了OMMT纳米片改性的水性聚氨酯(OWPU)纳米乳液及胶膜。利用小角XRD、TEM、DLS、EDS、TGA、LOI、CONE以及SEM对样品的结构和性能进行了表征。结果表明,HTPB剥离的OMMT纳米片的衬度均匀,完整性较好;改性后OWPU的乳液粒径增大,胶膜的弹性模量、热稳定性、抗熔滴性和阻燃性能均得到明显地改善,其中弹性模量可提高59.4%,热释放速率峰值可降低36.9%;燃烧炭渣表面形貌显示,瓦片状蒙脱土相互穿插形成了具有团簇结构的蒙脱土覆盖层。  相似文献   
48.
A zirconium hybrid polyhedral oligomeric silsesquioxane derivative (Zr–POSS–bisDOPO) is synthesized by the corner-capping and Kabachnik–Fields reactions. It is characterized by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (NMR), and then used as a flame retardant in diglycidyl ether of bisphenol A (DGEBA) to endow epoxy resin (EP) with flame retardancy. The flame retardancy, thermal stability, and mechanical properties of the cured EP/Zr–POSS–bisDOPO composites are investigated. The results show that when Zr–POSS–bisDOPO is added by 5–7 wt%, the EP/Zr–POSS–bisDOPO composites pass the UL-94 V-0 rating test. In addition, they have a better flame-retardant effect than pure EP. The combination of Zr atom embedded in the Si O cubic cage and the two phosphaphenanthrene substituent groups in one corner of cubic cage is expected to realize the Zr/Si/P ternary intramolecular hybrid synergistic effect and achieve the possibility of dispersing metal–POSS cages at a sub-micrometer-scale level into polymer matrix. It also proves that Zr–POSS–bisDOPO produces phosphorus-containing free radicals and terminates the chain reactions in gas phase. Meanwhile the Si O Si and Zr O units are retained in the solid phase, which promote the char formation and enhance the flame retardancy. This kind of Zr-doped POSS will be helpful for developing the new metal–POSS hybrid flame-retardant and polymer composites.  相似文献   
49.
In an effort to develop highly functionalized flame retardant materials, hybrid nanocoatings are prepared by alternately depositing a positively charged polyaniline (PANi) and negatively charged montmorillonite (MMT) using the layer-by-layer (LbL) assembly technique. Carbon nanotubes (CNTs) are employed in polymer nanocomposites as effective reinforcement, where nanotubes are stabilized in MMT aqueous solution. The 3D structure and high density of CNTs deposited in the PANi/CNTs-MMT multilayers produce thicker and heavier coatings in comparison to the LbL assemblies without CNTs. Vertical and horizontal flame testing show that the incorporation of CNTs improves fire resistance. Additionally, cone calorimetry reveals that stacking two nanomaterials (MMT and CNTs) in a single coating shows a significant reduction in peak heat release rate (up to 51%), total smoke release (up to 47%), and total heat release (up to 37%) for the polyurethane foam. The enhancement of flame retardancy is attributed to a synergistic effect; MMT serves as a physical barrier that retards the diffusion of heat and gas. The addition of CNTs strengthens the thermal stability and high char yield. These results, coupled with the simplicity with which the LbL deposition is applied, present a viable alternative to halogen-free flame retardant nanocoatings to natural and synthetic fibers.  相似文献   
50.
The design and application of bioderived flame retardants have been widely conducted to meet the concept of green and sustainable development. Here, self-assembly technique is used to prepare core–shell bioderived additives by using β-FeOOH as the core and polydopamine (PDA)/tannic acid (TA) bilayer as the shell, following adsorption of nickel ions to enhance the thermal stability, flame retardancy, and mechanical properties of epoxy resin (EP). The molecular structure of biobased resources is rich in hydroxyl groups and carbon content, which can be dehydrated and carbonized during combustion and promote the formation of robust protective char layer. With the addition of 5 wt% β-FeOOH@PTNi, the EP composites can pass V-0 rating in the UL-94 test. The peak heat release rate and total heat release decrease by 28.4% and 17.4% compared with pure EP. The bioderived nanorods can capture the oxygen free radicals, contributing to flame retarding in gaseous phase. Thus, the release of high-toxic CO and flammable gaseous is significantly suppressed. Besides, the storage modulus of EP composites increases by 16.0% with the addition of 5% β-FeOOH@PTNi compared with pure EP. This work provides a sustainable methodology for the design of bioderived flame retardants for EP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号