首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   172146篇
  免费   16418篇
  国内免费   8049篇
电工技术   7577篇
技术理论   2篇
综合类   10400篇
化学工业   43264篇
金属工艺   21644篇
机械仪表   9218篇
建筑科学   10848篇
矿业工程   4367篇
能源动力   6983篇
轻工业   15373篇
水利工程   2477篇
石油天然气   5882篇
武器工业   1531篇
无线电   10807篇
一般工业技术   28221篇
冶金工业   9548篇
原子能技术   2048篇
自动化技术   6423篇
  2024年   654篇
  2023年   3080篇
  2022年   4884篇
  2021年   6458篇
  2020年   6142篇
  2019年   5219篇
  2018年   5352篇
  2017年   6587篇
  2016年   6897篇
  2015年   7203篇
  2014年   10011篇
  2013年   11184篇
  2012年   11797篇
  2011年   13616篇
  2010年   9370篇
  2009年   9910篇
  2008年   8442篇
  2007年   10293篇
  2006年   9724篇
  2005年   7860篇
  2004年   7085篇
  2003年   6036篇
  2002年   5033篇
  2001年   4141篇
  2000年   3552篇
  1999年   2899篇
  1998年   2407篇
  1997年   2046篇
  1996年   1711篇
  1995年   1404篇
  1994年   1123篇
  1993年   802篇
  1992年   781篇
  1991年   592篇
  1990年   538篇
  1989年   465篇
  1988年   255篇
  1987年   165篇
  1986年   162篇
  1985年   152篇
  1984年   148篇
  1983年   95篇
  1982年   98篇
  1981年   32篇
  1980年   67篇
  1979年   30篇
  1975年   13篇
  1974年   10篇
  1959年   18篇
  1951年   11篇
排序方式: 共有10000条查询结果,搜索用时 312 毫秒
31.
《Ceramics International》2021,47(23):32915-32926
A novel TiNb fibre with an α-Al2O3 coating was fabricated by cathodic plasma electrolytic deposition (CPED), which has enormous potential for use in intermetallic matrix composites (IMMCs). This study aims to clarify the microstructural evolution of α-Al2O3 coatings on TiNb fibres and to systematically evaluate the mechanical properties of such modified fibres. The results revealed that the CPED process can be divided into three stages as voltage and deposition time increased: gas film formation, spark discharge, and spark fading, where the coating successively underwent local nucleation, uniform deposition, micropore self-sealing, and loose structure formation. The optimum deposition parameters of the deposition voltage of 300–400 V and deposition time of 3–4 min were determined, under which the α-Al2O3 coating combined tightly with the TiNb fibre matrix, micropores were completely self-sealed, and the loose structure and detrimental phase transitions in TiNb were effectively avoided. The fracture strength calculated by the Weibull method suggested that the fracture strength of the modified Al2O3/TiNb fibre was enhanced by more than 30%; this improved strength maintained high stability, benefiting from the intact α-Al2O3 ceramic coating. In particular, the fibre coated at 300 V for 4 min had the highest strength reaching 1620 MPa. The fracture morphology presented marked necking and shear lip characteristics, indicating excellent plasticity.  相似文献   
32.
Ceria-based solid solutions are important materials for high- and medium-temperature electrochemical applications. However, the stabilities of both binary and ternary ceria-based solid solutions are insufficient at elevated temperatures, which limits their application as solid electrolytes or SOFC cathodes. Data on the high-temperature stability of ceria-based ceramics are unavailable in the literature. In the present study, we report a thermodynamic stability investigation of Y2O3-CeO2 and Y2O3-ZrO2-CeO2 solid solutions. The thermal prehistories of binary and ternary systems were investigated using STA, XRD, and ESCA techniques. The vaporization processes were investigated in the temperature range of 1577–2227°С via the Knudsen effusion mass spectrometry technique. Using data on the component activity in solid-phase thermodynamic properties of Y2O3-CeO2 solid solutions, which is represented as the Gibbs energy, the excess Gibbs energy was calculated as a function of the ceria mol. %. It was shown that the reduction of Ce4+ to Ce3+ in Y2O3-CeO2 and Y2O3-ZrO2-CeO2 solid solutions corresponds to less-negative Gibbs energy compared to ZrO2-CeO2 solid solutions.  相似文献   
33.
34.
周忠彬  高金霞  袁宝慧 《爆破器材》2022,51(5):20-23,30
针对压制成型的PBX炸药装药,选择CT无损检测、巴西实验和扫描电镜检测等技术,对比研究了室温和加热两种温度下压制成型的炸药装药内部质量、静态力学性能和细观破坏形式。结果表明,加热压制有利于改善炸药装药的内部质量,可避免产生初始损伤,且提高了装药的力学性能。细观尺度上,室温压制成型的装药主要发生界面脱黏破坏,加热压制成型装药的主要破坏形式是穿晶断裂。  相似文献   
35.
Metal-support interaction and catalyst pretreatment are important for industrial catalysis. This work investigated the effect of supports (SiO2, CeO2, TiO2 and ZrO2) for Cu–Pd catalyst with high Cu/Pd ratio (Cu/Pd = 33.5) regarding catalyst cost, and the reduction temperatures of 350 °C and 550 °C were compared. The activity based on catalyst weight follows the order of Si > Ce > Zr > Ti when reduced at 350 °C. The reduction temperature leads to the surface reconstruction over the SiO2, CeO2 and TiO2 catalysts, while results in phase transition over Cu–Pd/ZrO2. The effect of reduction temperature on catalytic performance is prominent for the SiO2 and ZrO2 supported catalysts but not for the CeO2 and TiO2 ones. Among the investigated catalysts, Zr-350 exhibits the highest methanol yield. This work reveals the importance of the supports and pretreatment conditions on the physical-chemical properties and the catalytic performance of the Cu–Pd bimetallic catalysts.  相似文献   
36.
The present work was conducted to illustrate the mechanism of gel formation of myofibrillar proteins (MPs) under different microwave heating times. The results showed that the denaturation enthalpy (ΔH) of the MPs significantly decreased when the heating time increased from 3 to 9 s and then completely disappeared as the heating time progressed, indicating that the MPs gradually denatured and subsequently aggregated with increasing heating time, which was further verified by the changes in the secondary structure, electrophoretic bands, and gel properties (e.g., water holding capacity and textural profiles) of the MPs. Microstructural images indicated that the MP gel formed under 12 s had the most compact network, indicating that extended microwave heating time could induce quality deterioration of MP gels. Moreover, the hydrophobic forces, electrostatic forces, and disulphide bonds of the MPs gradually intensified with increasing microwave heating time, suggesting that both non-covalent and covalent bonds could promote molecular denaturation and subsequent aggregation of MPs. In addition, correlation analysis revealed that the changes in the molecular conformation of MPs induced by different microwave heating times could effectively regulate the formation of MP gels and their related properties.  相似文献   
37.
Utilizing inner-crystal piezoelectric polarization charges to control carrier transport across a metal-semiconductor or semiconductor–semiconductor interface, piezotronic effect has great potential applications in smart micro/nano-electromechanical system (MEMS/NEMS), human-machine interfacing, and nanorobotics. However, current research on piezotronics has mainly focused on systems with only one or rather limited interfaces. Here, the statistical piezotronic effect is reported in ZnO bulk composited of nanoplatelets, of which the strain/stress-induced piezo-potential at the crystals’ interfaces can effectively gate the electrical transport of ZnO bulk. It is a statistical phenomenon of piezotronic modification of large numbers of interfaces, and the crystal orientation of inner ZnO nanoplatelets strongly influence the transport property of ZnO bulk. With optimum preferred orientation of ZnO nanoplatelets, the bulk exhibits an increased conductivity with decreasing stress at a high pressure range of 200–400 MPa, which has not been observed previously in bulk. A maximum sensitivity of 1.149 µS m−1 MPa−1 and a corresponding gauge factor of 467–589 have been achieved. As a statistical phenomenon of many piezotronic interfaces modulation, the proposed statistical piezotronic effect extends the connotation of piezotronics and promotes its practical applications in intelligent sensing.  相似文献   
38.
Various products, including foods and pharmaceuticals, are sensitive to temperature fluctuations. Thus, temperature monitoring during production, transportation, and storage is critical. Facile indicators are required to monitor temperature conditions via color changes in real time. This study aimed to prepare and apply thiol-functionalized covalent organic frameworks (COFs) as a novel indicator for monitoring thermal history and temperature abuse. The COFs underwent obvious color changes from bright yellow to purple after exposure to different temperatures for varying durations. The reaction kinetics are analyzed under isothermal conditions, which reveal that the order of reaction rates is k−20°C < k4°C < k20°C < k35°C < k55°C. The activation energy (Ea) of the COFs is calculated using the Arrhenius equation as 50.71 kJ moL−1. The COFs are capable of sensitive color changes and offer a broad temperature tracking range, thereby demonstrating their application potential for the monitoring of temperature and time exposure history during production, transportation, and storage. This excellent performance thermal history indicator also shows promise for expanding the application field of COFs.  相似文献   
39.
Thermal action in extraction process had effects on characteristic tryptic peptides identification and gelling properties of porcine gelatin. SDS-PAGE, HPLC-LTQ/Orbitrap high-resolution mass spectrometry, texture analyser and rheometer were used to evaluate collagen depolymerisation degree, characteristic tryptic peptides and gelling properties of gelatins prepared in various thermal actions. Results showed that with increasing temperature and time, depolymerisation degree enlarged, while gel strength, gelling and melting temperature decreased. Mass spectra showed that 47 and 49 common characteristic tryptic peptides were identified in gelatins extracted at 50 °C and 100 °C with various times, respectively. Moreover, 34 common characteristic tryptic peptides were identified in all gelatin samples. Further comparison between this work and our previous investigations yielded 20 common characteristic tryptic peptides, which stably exist in various thermal actions. These common characteristic tryptic peptides may be very helpful for the accurate authentication of porcine gelatin.  相似文献   
40.
Reliable joints of Ti3SiC2 ceramic and TC11 alloy were diffusion bonded with a 50 μm thick Cu interlayer. The typical interfacial structure of the diffusion boned joint, which was dependent on the interdiffusion and chemical reactions between Al, Si and Ti atoms from the base materials and Cu interlayer, was TC11/α-Ti + β-Ti + Ti2Cu + TiCu/Ti5Si4 + TiSiCu/Cu(s, s)/Ti3SiC2. The influence of bonding temperature and time on the interfacial structure and mechanical properties of Ti3SiC2/Cu/TC11 joint was analyzed. With the increase of bonding temperature and time, the joint shear strength was gradually increased due to enhanced atomic diffusion. However, the thickness of Ti5Si4 and TiSiCu layers with high microhardness increased for a long holding time, resulting in the reduction of bonding strength. The maximum shear strength of 251 ± 6 MPa was obtained for the joint diffusion bonded at 850 °C for 60 min, and fracture primarily occurred at the diffusion layer adjacent to the Ti3SiC2 substrate. This work provided an economical and convenient solution for broadening the engineering application of Ti3SiC2 ceramic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号