首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33748篇
  免费   2230篇
  国内免费   2118篇
电工技术   835篇
综合类   1832篇
化学工业   7277篇
金属工艺   3247篇
机械仪表   1929篇
建筑科学   342篇
矿业工程   234篇
能源动力   1264篇
轻工业   7460篇
水利工程   89篇
石油天然气   492篇
武器工业   122篇
无线电   4225篇
一般工业技术   6949篇
冶金工业   640篇
原子能技术   404篇
自动化技术   755篇
  2024年   138篇
  2023年   436篇
  2022年   673篇
  2021年   833篇
  2020年   857篇
  2019年   779篇
  2018年   733篇
  2017年   1092篇
  2016年   981篇
  2015年   1031篇
  2014年   1430篇
  2013年   1774篇
  2012年   2148篇
  2011年   2660篇
  2010年   1874篇
  2009年   1986篇
  2008年   1774篇
  2007年   2353篇
  2006年   2227篇
  2005年   1828篇
  2004年   1632篇
  2003年   1393篇
  2002年   1166篇
  2001年   1094篇
  2000年   919篇
  1999年   767篇
  1998年   666篇
  1997年   541篇
  1996年   446篇
  1995年   398篇
  1994年   366篇
  1993年   302篇
  1992年   214篇
  1991年   149篇
  1990年   96篇
  1989年   98篇
  1988年   61篇
  1987年   42篇
  1986年   22篇
  1985年   21篇
  1984年   18篇
  1983年   9篇
  1982年   12篇
  1981年   8篇
  1980年   11篇
  1979年   7篇
  1976年   4篇
  1974年   4篇
  1963年   3篇
  1959年   5篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
21.
Corrosion and salt deposition problems severely restrict the industrialization of supercritical water oxidation. Transpiring wall reactor can effectively weaken these two problems by a protective water film. In this work, methanol was selected as organic matter, and the influences of vital structural parameters on water film properties and organic matter removal were studied via numerical simulation. The results indicate that higher than 99% of methanol conversion could be obtained and hardly affected by transpiration water layer, transpiring wall porosity and inner diameter. Increasing layer and porosity reduced reactor center temperature, but inner diameter's influence was lower relatively. Water film temperature reduced but coverage rate raised as layer, porosity, and inner diameter increased. Notably, the whole reactor was in supercritical state and coverage rate was only approximately 85% in the case of one layer. Increasing reactor length affected slightly the volume of the upper supercritical zone but enlarged the subcritical zone.  相似文献   
22.
The performance of surface ionic conduction single chamber fuel cell (SIC‐SCFC) prepared by the sol gel method was studied on electric characteristics due to the differences of the operating temperature and humidity, the electrode distance and electrolyte film depth, and multiple cells with the series and parallel connections. The SIC–SCFC was arranged the both anode of Pt and cathode of Au on the boehmite electrolyte. The open circuit voltage (OCV) of single cell achieved a maximum of 530mV in the dry gas mixtures of O2/H2=50% in room temperature operation, and but it became decrease as over 60%. The OCV was maintained the constant value between operating temperatures of 30°C to 80°C, and but it was decreased sharply at over 90°C because a humidity on the cell became lower as increasing operating temperature. Then, the cell property was improved to 120°C by adding to the humidity of 70% using a humidifier. The electrode distance and the electrolyte film depth of SIC‐SCFC found to be contributed to the reductions of the cell resistance and the surface roughness on the electrode, respectively. Moreover, the power property of SIC‐SCFC was significantly improved by cell stacks comprised of the series or parallel connection of a cell.  相似文献   
23.
对含有固体颗粒的局部润滑流域建立格子Boltzmann(LBM)离散模型,分析固体颗粒在润滑油中的动力学特性;考虑颗粒形状的影响,推导计入单个固体颗粒运动的润滑方程,并分析得到油膜压力;将油膜流动特性与颗粒动力学计算相结合,分析不同形状的颗粒运动对于油膜压力的影响。分析发现,当颗粒进入润滑油后,经过很短的瞬时颗粒就会达到一个瞬态稳定的状态,无论颗粒在油膜厚度方向的初始位置位于两壁面之间的中线上侧还是下侧,颗粒都会向中线位置移动;当颗粒速度为0时对于油膜压力的影响较大,随着颗粒速度逐渐增大,颗粒对于油膜压力的影响逐渐减小;当颗粒的宽度在油膜厚度方向相同时,长宽比越大的颗粒对于油膜压力的影响也越大;当颗粒长轴相等时,颗粒在油膜厚度方向的宽度越大,则其对于油膜压力的影响也越大,即颗粒形状对于油膜流动的阻碍能力越强,则其对于油膜压力的影响越大。  相似文献   
24.
25.
《Ceramics International》2019,45(13):16405-16410
Copper Indium Gallium Selenide (Cu(In,Ga)Se2, CIGSe) absorbers with different Ga contents were prepared by sputtering CIGSe ceramic targets and post-annealing. CIGSe solar cell devices were fabricated with other functional layers. The device performances and absorber properties were investigated. Increasing Ga content led to an increase in VOC and a decrease in JSC. Ga was supposed to diffuse towards back contact during the annealing process. The best performance was obtained as the ratio of Ga/(In + Ga) reaches 0.32 with the efficiency of 13.8% and a VOC of 537 mV.  相似文献   
26.
The objective of this study was to determine the effect of complexation of oxidised starch with mineral elements on its physicochemical properties. Corn starch was oxidised with sodium hypochlorite and, afterwards, modified with ions of potassium, magnesium and iron. Thus, native and modified starches were analysed for: contents of mineral elements, colour parameters (L*a*b*), water binding capacity and solubility in water at temperature of 60 and 80 °C. Thermodynamic characteristics of gelatinisation by DSC, molecular weight distribution by GPC, intrinsic viscosity and pasting properties by RVA were studied. The efficiency of incorporation of metal ions into oxidised corn starch was about 30%, 20% and 20% for potassium, magnesium and iron ions, respectively. The complexation with potassium ions caused the greatest changes in the molecular weight distribution and the intrinsic viscosity of starches and viscosity of starch pastes. Only modification of starch with iron ions affected the colour parameters of the starch. Incorporation of metal ions into starch resulted also in changes in its water binding capacity and solubility in water.  相似文献   
27.
28.
The high cost and potential toxicity of biodegradable polymers like poly(lactic‐co‐glycolic)acid (PLGA) has increased the interest in natural and modified biopolymers as bioactive carriers. This study characterized the physical stability (water sorption and state transition behavior) of selected starch and proteins: octenyl succinate–modified depolymerized waxy corn starch (DWxCn), waxy rice starch (DWxRc), phytoglycogen, whey protein concentrate (80%, WPC), whey protein isolate (WPI), and α‐lactalbumin (α‐L) to determine their potential as carriers of bioactive compounds under different environmental conditions. After enzyme modification and particle size characterization, glass transition temperature and moisture isotherms were used to characterize the systems. DWxCn and DWxRc had increased water sorption compared to native starch. The level of octenyl succinate anhydrate (OSA) modification (3% and 7%) did not reduce the water sorption of the DWxCn and phytoglycogen samples. The Guggenheim–Andersen–de Boer model indicated that native waxy corn had significantly (P < 0.05) higher water monolayer capacity followed by 3%‐OSA‐modified DWxCn, WPI, 3%‐OSA‐modified DWxRc, α‐L, and native phytoglycogen. WPC had significantly lower water monolayer capacity. All Tg values matched with the solid‐like appearance of the biopolymers. Native polysaccharides and whey proteins had higher glass transition temperature (Tg) values. On the other hand, depolymerized waxy starches at 7%‐OSA modification had a “melted” appearance when exposed to environments with high relative humidity (above 70%) after 10 days at 23 °C. The use of depolymerized and OSA‐modified polysaccharides blended with proteins created more stable blends of biopolymers. Hence, this biopolymer would be suitable for materials exposed to high humidity environments in food applications.  相似文献   
29.
From the perspectives of scientific researches and practical applications, it is desirable to explore high operating temperature ferromagnetic films. The effect of biaxial strain on magnetic properties of (110)-oriented La0.7Sr0.3MnO3 films was studied. High quality La0.7Sr0.3MnO3 films were grown on (110)-oriented perovskite single crystal substrates using pulsed laser deposition, varying substrate-induced misfit strains from ??2.27–0.75%. A remarkable enhancement of Curie temperature has been achieved for (110)-oriented La0.7Sr0.3MnO3 films clamped with small misfit strains (i.e., grown on LAST (110)). The enhanced Curie temperature of (110)-oriented La0.7Sr0.3MnO3 films could be attributed to the misfit strain between the films and the underlying substrates and may have technological implication for applications at high temperature environments.  相似文献   
30.
In this work, we focus on the Ge nanoparticles (Ge-np) embedded ZnO multilayered thin films. Effects of reactive and nonreactive growth of ZnO layers on the rapid thermal annealing (RTA) induced formation of Ge-np have been specifically investigated. The samples were deposited by sequential r.f. and d.c. sputtering of ZnO and Ge thin film layers, respectively on Si substrates. As-prepared thin film samples have been exposed to an ex-situ RTA at 600 °C for 60 s under forming gas atmosphere. Structural characterizations have been performed by X-ray Diffraction (XRD), Raman scattering, Secondary Ion Mass Spectroscopy (SIMS), and Scanning Electron Microscopy (SEM) techniques. It has been realized that reactive or nonreactive growth of ZnO layers significantly influences the morphology of the ZnO: Ge samples, most prominently the crystal structure of Ge-np. XRD and Raman analysis have revealed that while reactive growth results in a mixture of diamond cubic (DC) and simple tetragonal (ST12) Ge-np, nonreactive growth leads to the formation of only DC Ge-np upon RTA process. Formation of ST12 Ge-np has been discussed based on structural differences due to reactive and nonreactive growth of ZnO embedding layer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号