首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58866篇
  免费   7949篇
  国内免费   2320篇
电工技术   2540篇
技术理论   2篇
综合类   3362篇
化学工业   14621篇
金属工艺   2423篇
机械仪表   2327篇
建筑科学   5722篇
矿业工程   1844篇
能源动力   1104篇
轻工业   7654篇
水利工程   1356篇
石油天然气   1743篇
武器工业   278篇
无线电   5144篇
一般工业技术   6933篇
冶金工业   3580篇
原子能技术   685篇
自动化技术   7817篇
  2024年   190篇
  2023年   1097篇
  2022年   2633篇
  2021年   4365篇
  2020年   2049篇
  2019年   2097篇
  2018年   2187篇
  2017年   2759篇
  2016年   3896篇
  2015年   4366篇
  2014年   4722篇
  2013年   4670篇
  2012年   3578篇
  2011年   2867篇
  2010年   2405篇
  2009年   2376篇
  2008年   2287篇
  2007年   3429篇
  2006年   3629篇
  2005年   3083篇
  2004年   1996篇
  2003年   1893篇
  2002年   1371篇
  2001年   923篇
  2000年   788篇
  1999年   508篇
  1998年   302篇
  1997年   267篇
  1996年   251篇
  1995年   188篇
  1994年   200篇
  1993年   151篇
  1992年   126篇
  1991年   119篇
  1990年   141篇
  1989年   104篇
  1988年   72篇
  1987年   73篇
  1986年   78篇
  1985年   80篇
  1984年   83篇
  1983年   65篇
  1982年   51篇
  1981年   50篇
  1980年   51篇
  1966年   32篇
  1964年   47篇
  1962年   71篇
  1957年   36篇
  1955年   44篇
排序方式: 共有10000条查询结果,搜索用时 562 毫秒
991.
纳米TiO2碳热氮化制备纳米晶Ti(C0.7,N0.3)固溶体   总被引:1,自引:0,他引:1  
在封闭系统中,对纳米TiO2碳热还原氮化反应合成纳米晶Ti(C,N)固溶体粉末进行研究。结果表明,当以C/Ti值为2.7配料,氮气压力为0.005 MPa时,一定量纳米TiO2/纳米碳黑混合料在1600℃下保温4 h,可以合成晶粒尺寸为32 nm的球形Ti(C0.7,N0.3)固溶体粉末。  相似文献   
992.
针对虚拟人切片数据量大、解剖结构复杂等特点,对分割虚拟人切片图像的基于二叉树SVM多类分割方法进行研究.基于二叉树的SVM多类分割方法较其他SVM多分类方法更符合人们分割虚拟人切片图像的习惯,而且能获得较高的分割性能和质量.通过对该方法的性能分析,为组织高效的二叉树SVM多类分割方法提供了理论支持.  相似文献   
993.
采用水热共沉淀法和原位氧化还原法制备MnOx/MgAl类水滑石(Mg3Al1-LDHs)催化剂,以水玻璃作为黏结剂将其负载到铝蜂窝上,用于室温下去除甲醛。通过X射线衍射(XRD)、热重分析(TG)、X射线光电子能谱(XPS)、N2吸附-脱附、傅里叶变换红外光谱(FT-IR)等手段进行表征。表征结果表明:MnOx/Mg3Al1-LDHs具有典型类水滑石结构,大量结合水和羟基; MnOxδ-MnO2和Mn3O4的混合物,具有高比例Mn4+/Mn3+和丰富的吸附氧。实验结果表明:室温(25 ℃,相对湿度60%)下反应4 h后,MnOx/Mg3Al1-LDHs催化剂可将甲醛质量浓度由1.30 mg/m3降至0.10 mg/m3以下,且经过8次和连续15 d实际测试,表明催化剂具有良好的稳定性和甲醛去除效果。MnOx/Mg3Al1-LDHs催化剂最佳负载量(质量分数)为5%,风扇最佳功率为10 W,空气中湿度对甲醛去除效果影响较小,该催化剂具有较强水分抵抗能力,反应温度提升会较大程度提高甲醛去除效果。  相似文献   
994.
ZnO deposition in porous γ-Al2O3 via atomic layer deposition (ALD) is the critical first step for the fabrication of zeolitic imidazolate framework membranes using the ligand-induced perm-selectivation process (Science, 361 (2018), 1008–1011). A detailed computational fluid dynamics (CFD) model of the ALD reactor is developed using a finite-volume-based code and validated. It accounts for the transport processes within the feeding system and reaction chamber. The simulated precursor spatiotemporal profiles assuming no ALD reaction were used as boundary conditions in modeling diethylzinc reaction/diffusion in porous γ-Al2O3, the predictions of which agreed with experimental electron microscopy measurements. Further simulations confirmed that the present deposition flux is much less than the upper limit of flux, below which the decoupling of reactor/substrate is an accurate assumption. The modeling approach demonstrated here allows for the design of ALD processes for thin-film membrane formation including the synthesis of metal–organic framework membranes.  相似文献   
995.
The BaTiO3 powder was prepared via a solid-state reaction route. It was studied for the degradation of bacterial cells, dye, and pharmaceuticals waste using ultrasonically driven piezocatalytic effect. The bacterial catalytic behavior of poled BaTiO3 was remarkably increased during ultrasonication (10% E coli survival in 60 minutes). The structural damages were illustrated using scanning electron micrographs of bacterial cells which demonstrated morphological manifestations under different conditions. Methylene blue (MB dye), ciprofloxacin and diclofenac were also cleaned using the piezocatalytic effect associated with the poled BaTiO3 powder. Around 92, 85, and 78% of degradations were observed within 150 minutes duration for methylene blue, ciprofloxacin, and diclofenac, respectively.  相似文献   
996.
This work was done to assess the role of precursors (agro and graphite) on performance of carbon nanoallotropes-biomacromolecules composite as drug delivery for controlling the release of niacin. In this respect graphene oxide and bagasse-based carbon oxide were synthesized and chelated with chitosan (Cs-GO and Cs-Co). These gel composites were characterized by many techniques [morphology, differential scanning calorimetry, Fourier-transform infrared spectroscopy, swelling, encapsulation efficiency (EE) and loading (L) % of niacin. Another series of experiments was carried out for studying the role of replacing part of carbon nanoallotrope by carboxymethyl cellulose (CMC) on performance of produced drug carries, these systems were coded as Cs-GO-CMC and Cs-Co-CMC. The data showed that, the Cs-GO gel composite provided maximum release of NA, at 5 h, for pH's simulated gastric and intestinal fluids; pH. 2.1 and pH 7.4 (1120 mg/L and 757 mg/L). The incorporation of CMC is not acceptable as it provided low drug release together with burst release of NA-drug, and consequently possible caused tissue irritation or toxicity in the human body. The Cs-GO and Cs-CO systems with relatively low drug loading were recommended for their better controllability system to NA release, which prolonging benefit of human with niacin. The NA release from all investigated gels followed Fickian and non-Fickian diffusion mechanisms.  相似文献   
997.
Carbon fiber reinforced epoxy (CE) composite is ideal for a cryogenic fuel storage tank in space applications due to its unmatched specific strength and modulus. In this article, inter-laminar shear strength (ILSS) of carbon fiber/epoxy (CE) composite is shown to be considerably improved by engineering the interface with carboxyl functionalized multi-walled carbon nanotube (FCNT) using electrophoretic deposition technique. FCNT deposited fibers from different bath concentrations (0.3, 0.5, and 1.0 g/L) were used to fabricate the laminates, which were then tested at room (30°C) and in-situ liquid nitrogen (LN) (−196°C) temperature as well as conditioning for different time durations (0.25, 0.5, 1, 6, and 12 h) followed by immediate RT testing to study the applicability of these engineered materials at the cryogenic environment. A maximum increment in ILSS was noticed at bath concentration of 0.5 g/L, which was ~21% and ~ 17% higher than neat composite at 30°C and − 196°C, respectively. Short-term LN conditioning was found to be detrimental due to developed cryogenic shock, which was further found to be compensated by cryogenic interfacial clamping upon long-term exposure.  相似文献   
998.
Hollow spheres of nickel oxide (NiO) and silver, gold, and platinum nanoparticle loaded NiO composites were successfully produced by using polystyrene (PS) latexes as hard template. Due to the presence of tertiary amine based diblock copolymer stabilizer on the surface of PS, the tertiary amine functional groups provided homogene deposition of nickel hydroxide, and then the precursor NiO salt production on the surface of PS latexes with a controlled precipitation technique. Then, NiO and NiO/metal NP hollow spheres were produced by calcination at 600 °C. Thermogravimetric analysis indicated that the amounts of NiO and NiO-composite after calcination were in the range of 21.1–29.7 wt%. The diameters of metal oxide spheres were in the range of 2.0–2.7 μm and the shell thickness were in the range of 250–350 nm. These structures had very low densities due to their porous and hollow structures and had outer layers with highly rough surfaces due to formation of nanosheets, which may offer important advantages for catalysis studies.  相似文献   
999.
Conducting polymer composites constituted by co-continuous poly (vinylidene fluoride) (PVDF)/ ethylene- vinyl acetate copolymer (EVA) blends with multiwalled carbon nanotube (CNT) were prepared by melt mixing using different procedures. The effect of the master batch approach on the conductivity, morphology, mechanical, thermal and rheological properties of PVDF/EVA/CNT nanocomposites was compared with that based on one step mixing strategy. The selective extraction experiments revealed that CNT was preferentially localized in the EVA phase in all situations, even when PVDF@CNT master batch was employed. Nanocomposites prepared with EVA@CNT master batch displayed higher conductivity, whose value reached around 10−1 S m−1 with the addition of 0.56 vol% of CNT. The better electrical performance was attributed to the better distribution of the filler, as indicated by transmission electron microscopy and rheological behavior. The electrical and rheological behavior were also investigated as a function of the CNT content.  相似文献   
1000.
Isocyanate-based graphene oxide-containing polyimide foams were synthesized by a semi-prepolymer method. In this method, while the first solution containing pre-polymer was derived from pyromellitic dianhydride and excess polymethylene polyphenylene isocyanate (PM200), the second solution contains dianhydride derivatives, water, catalysts, surfactants, and graphene oxide. PIFs were prepared with 0%, 0.25%, 0.50%, 0.75%, and 1% graphene oxide by weight, respectively. PIFs exhibited a minimum side reaction and urea generation was not seen for all PIFs instead of imide bonding. The addition of graphene oxide (GO) leads to a more close-packed structure. Therefore, crosslinking density and thermal stability of graphene oxide-containing polyimide foams increased. Upon the addition of 1% GO, almost seven times higher compression strength was obtained compared to neat PIFs. Also, LOI values supported the theory that thermally stable and flame retardant PIFs can be synthesized via the isocyanate-based process with GO.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号