首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4709篇
  免费   337篇
  国内免费   142篇
电工技术   53篇
综合类   166篇
化学工业   2490篇
金属工艺   540篇
机械仪表   249篇
建筑科学   112篇
矿业工程   25篇
能源动力   17篇
轻工业   269篇
水利工程   8篇
石油天然气   44篇
武器工业   20篇
无线电   267篇
一般工业技术   776篇
冶金工业   80篇
原子能技术   20篇
自动化技术   52篇
  2024年   13篇
  2023年   89篇
  2022年   65篇
  2021年   176篇
  2020年   142篇
  2019年   148篇
  2018年   113篇
  2017年   143篇
  2016年   145篇
  2015年   157篇
  2014年   198篇
  2013年   770篇
  2012年   225篇
  2011年   290篇
  2010年   175篇
  2009年   191篇
  2008年   189篇
  2007年   237篇
  2006年   215篇
  2005年   182篇
  2004年   176篇
  2003年   123篇
  2002年   100篇
  2001年   101篇
  2000年   105篇
  1999年   81篇
  1998年   103篇
  1997年   81篇
  1996年   56篇
  1995年   86篇
  1994年   57篇
  1993年   40篇
  1992年   52篇
  1991年   29篇
  1990年   20篇
  1989年   22篇
  1988年   18篇
  1987年   14篇
  1986年   12篇
  1985年   16篇
  1984年   7篇
  1983年   10篇
  1982年   10篇
  1976年   4篇
  1974年   1篇
  1959年   1篇
排序方式: 共有5188条查询结果,搜索用时 300 毫秒
171.
This research evaluated the in situ physicochemical changes and alterations occurring in an electrolytic chromium coated steel (ECCS), surface protected by polyethylene teraphthalate (PET) copolymer, after inducing a fracture on the coating in an acid acetic‐acetate medium. The delamination was characterized in the front of the failure by means of anodic and cathodic electrochemical mechanisms, and the resistance and degradation of the metal‐polymer composite's substrates were analyzed by means of Raman vibrational spectroscopy. The application of an electrochemical cell to generate in situ delamination, simulating the formation of pores or artificial defects, provided information on the activity inside the substrates of the PET‐coated ECCS composite as a result of the effect of the acetic acid. The anodic delamination mechanism is based on the diffusion of the electrolyte through the metal‐polymer interface and the pre‐existence of pores on the polymer layer. The cathodic delamination mechanism is based on the mechanical action of the gaseous hydrogen as a result of the reduction of H+. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   
172.
Extracellular mechanical cues have been shown to have a profound effect on osteogenic cell behaviour. However, it is not known precisely how these cues alter intracellular mechanics to initiate changes in cell behaviour. In this study, a combination of in vitro culture of MC3T3-E1 cells and finite-element modelling was used to investigate the effects of passive differences in substrate stiffness on intracellular mechanics. Cells on collagen-based substrates were classified based on the presence of cell processes and the dimensions of various cellular features were quantified. Focal adhesion (FA) density was quantified from immunohistochemical staining, while cell and substrate stiffnesses were measured using a live-cell atomic force microscope. Computational models of cell morphologies were developed using an applied contraction of the cell body to simulate active cell contraction. The results showed that FA density is directly related to cell morphology, while the effect of substrate stiffness on internal cell tension was modulated by both cell morphology and FA density, as investigated by varying the number of adhesion sites present in each morphological model. We propose that the cells desire to achieve a homeostatic stress state may play a role in osteogenic cell differentiation in response to extracellular mechanical cues.  相似文献   
173.
174.
由于采动荷载和爆破荷载对已有支护锚杆产生影响,因此迫切需要研究锚杆在动荷载作用下的微观力学特性及黏结性变化。从工程实际出发,现场监测锚杆工作状态下轴力变化和爆破荷载作用下锚杆周边围岩振动信息,并开展探索性室内试验。通过室内试验获得锚杆在轴向荷载作用下横向固有频率振动后的振动强度与工作龄期耦合作用下锚杆黏结性衰减规律的拟合计算式。研制了横向简谐荷载作用下端锚黏结式锚杆模型试验装置,采用均匀设计方法,考虑锚杆长度和锚杆直径两个影响因素,通过动态监测系统获得了横向简谐荷载作用下锚杆应力沿锚杆长度的分布规律、锚杆应力分布与拉拔力的关系,以及剪切应力与位移的关系。最终采用大型有限差分软件FLAC3D,建立了锚杆与围岩相互作用的力学模型。  相似文献   
175.
This in vitro study investigates bonding to enamel using experimental silane-based primers with and without 2-hydroxyethylmethacrylate (HEMA) under various artificial ageing methods. One hundred and fifty sound extracted human premolars were used and randomly assigned to three experimental study groups. They were first acid-etched for 15 s, rinsed with water spray, air dried, and applied 0.3 ml of artificial saliva on the enamel surfaces. Two groups of enamel surfaces were primed using silane-based experimental primers (1.0 vol% of 3-isocyanatopropyltrimethoxysilane and 0.5 vol% of bis-1,2-(triethoxysilylethane) with and without 25% HEMA) while one group was served as control. Then, stainless steel premolar orthodontic brackets were fixed onto teeth with orthodontic resin composite. The specimens from each group (n=10) were stored under different ageing conditions: thermo-cycling (500, 2000, and 6000 cycles), storage in artificial saliva for 24 h, and for one year. The shear adhesion (bond) strength (SBS) was tested by using a universal testing machine at a crosshead speed of 1.0 mm/min. Surface morphology and failure modes at the debonded interfaces were examined using SEM. Two-way ANOVA and post hoc tests were used to compare the SBS (α=0.05). The results suggested that an experimental primer with 25% HEMA, after 24 h storage in artificial saliva, produced the highest mean SBS (22.1 MPa, SD 2.2 MPa). The lowest mean value (5.8 MPa, SD 1.1 MPa) was obtained with the control group thermo-cycled (6000 cycles). There was a significant difference between the experimental primers (p<0.001) and artificial ageing (p<0.001). We conclude that 25% HEMA inclusion in silane primer could provide satisfactory adhesion strength, and 500 cycles of thermo-cycling (ISO TR 11450) does not correlate with 1-year artificial saliva storage for enamel bonding test.  相似文献   
176.
Rods of commercially pure titanium were machined using standard oil-based emulsion and cryogenic cooling, and were then coated with sphene (CaTiSiO5) bioceramic by spray coating using an automatic airbrush. The sphene bioceramic was synthesized in-situ starting from a suspension of polysiloxane that used as SiO2 precursor, CaCO3 and TiO2 nanoparticles. The suspension was deposited on the machined substrates, which were heat treated up to 950?°C in order to promote the formation of sphene ceramic. The produced coated prototypes were characterized to evaluate the effect of the machining conditions on surface roughness and microstructure of the substrate, and thereby their effect on coating adhesion. Nanoindentation tests were employed to determine the hardness and elastic modulus of the coating through its thickness. Results showed that the reduced amount of defects on the surface of the cryo-machined substrates, contributed to increase the hardness, elastic modulus and adhesion strength of the coating-substrate interfaces compared to standard machined samples, therefore improving adhesion of the coating to the underlying substrate.  相似文献   
177.
With dopamine as the monomer, the model pesticide 2,4-dichlorophenoxyacetic acid (2,4D) was loaded on cysteamine (NHSH)-modified polydopamine (PDA) nanospheres [2,4-dichlorophenoxyacetic acid bound to cysteamine-modified polydopamine (2,4D–PDA–NHSH)] via the construction of amide bonds. We investigated the materials’ structure, adhesive capability, and release behaviors, especially the mechanism of the release processes. The results demonstrate that the materials were spherical in appearance and adhesive. 2,4D loaded on the PDA vehicle was amorphous in structure. The amide bond between PDA and 2,4D generated by NHSH not only enhanced the loading amount of PDA from 296.28 to 692.56 mg/g but also decreased the thermal stability from 291 to 230 °C. The 2,4D–PDA–NHSH showed no pH responsiveness, whereas the PDA system without NHSH modification exhibited pH sensitivity. A mechanism for the observed behaviors was suggested. First-order, logistic, Weibull, and Korsmeyer–Peppas models were applied to describe the release behaviors at different pH values. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47469.  相似文献   
178.
The dental cobalt–chromium alloys are an important biomaterial used in making artificial dentures. Bacterial adhesion to cobalt–chromium alloys usually results in severe complications such as periodontal infection, secondary caries, and denture stomatitis, which have severe adverse impacts on human health. Therefore, an effective method is needed to reduce the bacterial adhesion to dental cobalt–chromium alloys. The aim of this study was to investigate the effects of ta-C films deposited on a dental cobalt–chromium alloy on the adhesion of Streptococcus mutans (ATCC175), Actinomyces viscosus (ATCC19246) and Candida albicans (ATCC76615). A filtered cathodic vacuum arc (FCVA) technique was used to coat the cobalt–chromium alloy with a ta-C film. Atomic force microscopy (AFM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to analyze the surface characteristics of the coating. Surface roughness was detected. Surface free energy and its components were calculated by measuring the contact angle. The results showed that the maximum sp3 fraction was achieved at 200 V substrate bias voltage. Compared with uncoated specimens, the ta-C film coated specimens had a lower surface roughness, a higher surface energy and a higher hydrophilicity. Most importantly, the adhesion of the three tested bacterial strains to the ta-C film coated cobalt–chromium alloy was significantly decreased. These results showed that ta-C film surface treatment could significantly reduce the bacterial adhesion to dental cobalt–chromium alloys, suggesting the potential of ta-C film surface treatment in artificial denture applications.  相似文献   
179.
180.
Ti element is an important active element in brazing Zirconia ceramic (ZrO2) ceramic. Therefore, the interface bonding mechanism of Ti and ZrO2 was studied by using first principles calculation. Two kinds of interfaces with different termination and stacking sequence were established, and the interfacial bonding mechanism was studied using work of adhesion (Wad), electronic behavior and interface energy. The results show that in the O-terminated interface, Ti and O form a strong ion-covalent bond at the interface, and the Wad can reach 13.61 J/m2. In the Zr-terminated interface, Ti and Zr form a metal-covalent bond, and the Wad is 5.56 J/m2. At a temperature of 1123K, when the lnPO2 is larger than e−17, the O-rich interface is more stable in thermodynamics. Therefore, under the experimental condition, the interface tends to form Ti-O compounds when ZrO2 is brazed using Ag(Ti) filler metal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号