首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   147771篇
  免费   16748篇
  国内免费   10483篇
电工技术   11459篇
技术理论   6篇
综合类   15649篇
化学工业   17158篇
金属工艺   8447篇
机械仪表   11071篇
建筑科学   21234篇
矿业工程   5420篇
能源动力   5177篇
轻工业   8003篇
水利工程   3848篇
石油天然气   6814篇
武器工业   1726篇
无线电   10893篇
一般工业技术   14621篇
冶金工业   5080篇
原子能技术   817篇
自动化技术   27579篇
  2024年   628篇
  2023年   2590篇
  2022年   4722篇
  2021年   5259篇
  2020年   5433篇
  2019年   4548篇
  2018年   4134篇
  2017年   5138篇
  2016年   5570篇
  2015年   6213篇
  2014年   10017篇
  2013年   8964篇
  2012年   11197篇
  2011年   11936篇
  2010年   8838篇
  2009年   9508篇
  2008年   8565篇
  2007年   9927篇
  2006年   8700篇
  2005年   7410篇
  2004年   6044篇
  2003年   5248篇
  2002年   4461篇
  2001年   3657篇
  2000年   3136篇
  1999年   2438篇
  1998年   2028篇
  1997年   1701篇
  1996年   1299篇
  1995年   1130篇
  1994年   1012篇
  1993年   694篇
  1992年   624篇
  1991年   493篇
  1990年   415篇
  1989年   300篇
  1988年   226篇
  1987年   108篇
  1986年   87篇
  1985年   86篇
  1984年   71篇
  1983年   72篇
  1982年   83篇
  1981年   29篇
  1980年   75篇
  1979年   26篇
  1978年   17篇
  1975年   14篇
  1959年   14篇
  1951年   19篇
排序方式: 共有10000条查询结果,搜索用时 22 毫秒
11.
Poly(l ‐lactic acid) (PLLA) is a biodegradable and biocompatible thermoplastic polyester produced from renewable sources, widely used for biomedical devices, in food packaging and in agriculture. It is a semicrystalline polymer, and as such its properties are strongly affected by the developed semicrystalline morphology. As a function of the crystallization temperature, PLLA can form different crystal modifications, namely α′‐crystals below about 120 °C and α‐crystals at higher temperatures. The α′ modification is therefore of special importance as it may be the preferred polymorph developing at processing‐relevant conditions. It is a metastable modification which typically transforms into the more stable α‐crystals on annealing at elevated temperature. The structure, kinetics of formation and thermodynamics of α′‐ and α‐crystals of PLLA are reviewed in this contribution, together with the effect of α′‐/α‐crystal polymorphism on the properties of PLLA. © 2018 Society of Chemical Industry  相似文献   
12.
To investigate the effect of cooking temperature (55, 65, 75, 85 and 95 °C) on texture and flavour binding of braised sauce porcine skin (BSPS), sensory acceptance, microstructure and flavour-binding capacity were investigated during the processing of BSPS. Samples cooked at 85 and 95 °C showed better texture and aroma scores. Hardness and chewiness of BSPS were obviously improved at 85 and 95 °C than control group. Collagen structure was significantly destroyed over 85 °C. The porcine skin collagen heated at 85 and 95 °C showed relatively higher flavour-binding capacity than other samples. The improvement of texture of BSPS was mainly attributed to the degradation of collagen. Higher aroma scores of BSPS were related to intense binding abilities with aroma compounds at 85 and 95 °C. Cooking at 85 or 95 °C could be an optimal cooking temperature for BSPS.  相似文献   
13.
The purpose of the current work was to research the effect of alkali metal oxide on the structure, thermal properties, viscosity and chemical stability in the glass system (R2O–CaO–B2O3–SiO2) systematically. Because the glass would emulsify when Li2O was added to the glass batch, this article did not discuss Li2O. The results showed that when the amount of Na2O was less than 4 mol.%, there was a higher interconnectivity of borate and silicate sub-networks in glass, as more mixed Si–O–B bonds were present in glass. The glass samples exhibited excellent thermal properties and chemical stabilities. As the amount of Na2O exceeded 4 mol.%, the interconnectivity of borate and silicate sub-networks was weakened. The thermal properties and chemical stabilities of the glass samples were reduced. The connectivity of the silicate sub-network was weakened slightly as the Na/K ratio varied, and the coefficient of thermal expansion (CTE) of the glass samples gradually increased, and the resistance to thermal shock (RTS) value gradually decreased. Moreover, the viscosity of the glass samples decreased with the ratio of Na/Si and Na/K increased.  相似文献   
14.
《Ceramics International》2022,48(7):9413-9425
Artificial bone fillers are essentially required for repairing bone defects, and developing the fillers with synergistic biocompatibility and anti-bacterial activity persists as one of the critical challenges. In this work, a new agarose/gadolinium-doped hydroxyapatite filler with three-dimensional porous structures was fabricated. For the composite filler, agarose provides three-dimensional skeleton and endows porosity, workability, and high specific surface area, hydroxyapatite (HA) offers the biocompatibility, and the rare earth element gadolinium (Gd) acts as the antibacterial agent. X-ray photoelectron spectroscopy detection showed the doping of Gd in HA lattice with the formation of Gd-HA interstitial solid solution. Attenuated total reflection Fourier transform infrared spectroscopy imaging suggested chemical interactions between agarose and Gd-HA, and the physical structure of agarose was tuned by the Gd-doped HA. Cytotoxicity testing and alizarin red staining experiments using mouse pro-osteoblasts (MC3T3-E1) revealed remarkable bioactivity and osteogenic properties of the composite fillers, and proliferation and growth rates of the cells increased in proportion to Gd content in the composites. Antibacterial testing using the gram-positive bacteria S. aureus and the gram-negative bacteria E. coli indicated promising antibacterial properties of the fillers. Meanwhile, the antibacterial properties of composite filles were enhanced with the increase of Gd content. The antibacterial fillers with porous structure and excellent physicomechanical properties show inspiring potential for bone defect repair.  相似文献   
15.
Chemical engineering systems often involve a functional porous medium, such as in catalyzed reactive flows, fluid purifiers, and chromatographic separations. Ideally, the flow rates throughout the porous medium are uniform, and all portions of the medium contribute efficiently to its function. The permeability is a property of a porous medium that depends on pore geometry and relates flow rate to pressure drop. Additive manufacturing techniques raise the possibilities that permeability can be arbitrarily specified in three dimensions, and that a broader range of permeabilities can be achieved than by traditional manufacturing methods. Using numerical optimization methods, we show that designs with spatially varying permeability can achieve greater flow uniformity than designs with uniform permeability. We consider geometries involving hemispherical regions that distribute flow, as in many glass chromatography columns. By several measures, significant improvements in flow uniformity can be obtained by modifying permeability only near the inlet and outlet.  相似文献   
16.
The triboelectric effect has recently demonstrated its great potential in environmental remediation and even new energy applications for triggering a number of catalytic reactions by utilizing trivial mechanical energy. In this study, Ba4Nd2Fe2Nb8O30 (BNFN) submicron powders were used to degrade organic dyes via the tribocatalytic effect. Under the frictional excitation of three PTFE stirring rods in a 5 mg/L RhB dye solution, BNFN demonstrates a high tribocatalytic degradation efficiency of 97% in 2 h. Hydroxyl radicals (?OH) and superoxide radicals (?O2-) were also detected during the catalysis process, which proves that triboelectric energy stimulates BNFN to generate electron-hole pairs. The tribocatalysis of tungsten bronze BNFN submicron powders provides a novel and efficient method for the degradation of wastewater dye by utilizing trivial mechanical energy.  相似文献   
17.
Reliable joints of Ti3SiC2 ceramic and TC11 alloy were diffusion bonded with a 50 μm thick Cu interlayer. The typical interfacial structure of the diffusion boned joint, which was dependent on the interdiffusion and chemical reactions between Al, Si and Ti atoms from the base materials and Cu interlayer, was TC11/α-Ti + β-Ti + Ti2Cu + TiCu/Ti5Si4 + TiSiCu/Cu(s, s)/Ti3SiC2. The influence of bonding temperature and time on the interfacial structure and mechanical properties of Ti3SiC2/Cu/TC11 joint was analyzed. With the increase of bonding temperature and time, the joint shear strength was gradually increased due to enhanced atomic diffusion. However, the thickness of Ti5Si4 and TiSiCu layers with high microhardness increased for a long holding time, resulting in the reduction of bonding strength. The maximum shear strength of 251 ± 6 MPa was obtained for the joint diffusion bonded at 850 °C for 60 min, and fracture primarily occurred at the diffusion layer adjacent to the Ti3SiC2 substrate. This work provided an economical and convenient solution for broadening the engineering application of Ti3SiC2 ceramic.  相似文献   
18.
学术文献的摘要是对文献主要内容的浓缩,摘要不同部分的语步具有不同的信息,语步的自动识别和抽取对于学术摘要的后续研究有着重要的应用价值,而目前语步识别的研究相对较少,并且相关算法的效果还需要提高。针对上述问题,该文提出了一种基于ERNIE-BiGRU模型的语步识别算法。该算法首先结合中文句法分析理论提出基于句法依存关系的多语步结构拆分法,对学术文献摘要多语步结构进行自动拆分,获得多个单语步结构;然后构建用于训练的单语步结构语料库,并利用知识增强语义表示预训练模型,训练出句子级词向量;最后将训练出的单语步结构词向量信息输入双向门限循环单元(BiGRU)进行摘要语步自动化识别,取得了良好的效果。实验结果表明,该算法具有较好的鲁棒性和较高的识别精度,在结构化和非结构化摘要上的识别准确率分别达到了96.57%和93.75%。  相似文献   
19.
《Ceramics International》2022,48(3):3368-3373
Over the recent past, lead-based halide perovskite materials have drawn significant attention due to their excellent optical and electrical properties for solar cells and optoelectronics applications. However, the toxicity of lead elements and instability under ambient conditions leads to develop alternative compositions. Herein, we report a novel mechanochemical synthesis of tin iodide-based double perovskites (A2SnI6; A = Rb+, Cs+, methylammonium, and formamidinium), and their structural, optical, and electrical properties are investigated. Importantly, we found that the hydrogen iodide (HI) addition during the ball-milling process minimizes secondary phase formation in the synthesized A2SnI6 powders. The effects of HI addition and the A-site substitution are investigated with respect to the lattice parameters, optical bandgaps, and electrical properties of the synthesized perovskite materials. Our results demonstrate essential information to improve the understanding of halide perovskite materials and develop efficient lead-free perovskite photoelectric devices.  相似文献   
20.
With liquefied natural gas becoming increasingly prevalent as a flexible source of energy, the design and optimization of industrial refrigeration cycles becomes even more important. In this article, we propose an integrated surrogate modeling and optimization framework to model and optimize the complex CryoMan Cascade refrigeration cycle. Dimensionality reduction techniques are used to reduce the large number of process decision variables which are subsequently supplied to an array of Gaussian processes, modeling both the process objective as well as feasibility constraints. Through iterative resampling of the rigorous model, this data-driven surrogate is continually refined and subsequently optimized. This approach was not only able to improve on the results of directly optimizing the process flow sheet but also located the set of optimal operating conditions in only 2 h as opposed to the original 3 weeks, facilitating its use in the operational optimization and enhanced process design of large-scale industrial chemical systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号