首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8939篇
  免费   201篇
  国内免费   156篇
电工技术   421篇
综合类   314篇
化学工业   1477篇
金属工艺   760篇
机械仪表   1075篇
建筑科学   512篇
矿业工程   108篇
能源动力   729篇
轻工业   559篇
水利工程   74篇
石油天然气   274篇
武器工业   57篇
无线电   739篇
一般工业技术   815篇
冶金工业   488篇
原子能技术   164篇
自动化技术   730篇
  2024年   3篇
  2023年   94篇
  2022年   127篇
  2021年   160篇
  2020年   165篇
  2019年   126篇
  2018年   119篇
  2017年   173篇
  2016年   205篇
  2015年   221篇
  2014年   435篇
  2013年   489篇
  2012年   436篇
  2011年   704篇
  2010年   492篇
  2009年   511篇
  2008年   434篇
  2007年   587篇
  2006年   500篇
  2005年   494篇
  2004年   416篇
  2003年   393篇
  2002年   313篇
  2001年   224篇
  2000年   203篇
  1999年   236篇
  1998年   215篇
  1997年   176篇
  1996年   150篇
  1995年   117篇
  1994年   83篇
  1993年   72篇
  1992年   52篇
  1991年   44篇
  1990年   32篇
  1989年   20篇
  1988年   27篇
  1987年   12篇
  1986年   9篇
  1985年   11篇
  1984年   7篇
  1983年   2篇
  1982年   4篇
  1981年   2篇
  1975年   1篇
排序方式: 共有9296条查询结果,搜索用时 15 毫秒
11.
A high temperature gradient within a solid oxide fuel cell (SOFC) stack is considered a major challenge in SOFC operations. This study investigates the effects of the key parameters on SOFC system efficiency and temperature gradient within a SOFC stack. A 40-cell SOFC stack integrated with a bio-oil sorption-enhanced steam reformer is simulated using MATLAB and DETCHEM. When the air-to-fuel ratio and steam-to-fuel ratio increase, the stack average temperature and temperature gradient decrease. However, a decrease in the stack temperature steadily reduces the system efficiency owing to the tradeoff between the stack performance and thermal balance between heat recovered and consumed by the system. With an increase in the bio-oil flow rate, the system efficiency decreases because of the lower resident time for the electrochemical reaction. This is not, however, beneficial to the maximum temperature gradient. To minimize the temperature gradient of the SOFC stack, a decrease in the bio-oil flow rate is the most effective way. The maximum temperature gradient can be reduced to 14.6 K cm−1 with the stack and system efficiency of 76.58 and 65.18%, respectively, when the SOFC system is operated at an air-to-fuel ratio of 8, steam-to-fuel ratio of 6, and bio-oil flow rate of 0.0041 mol s−1.  相似文献   
12.
A solid oxide fuel cell based on double-sided cathodes is developed in our group, showing special properties and many advantages under some harsh conditions. To optimize the cell further, a thermo-electro-chemo-mechanical coupled 3D model is developed to simulate the distributions of temperature, current density, fuel gas and thermal stress under different voltages. The numerical results indicate that the temperature distribution, current, fuel gases and thermal stress is non-uniform in the cell at different voltages. The distribution of thermal stress in the electrolyte is also non-uniform because of the un-even electrochemical reaction and convective heat transfer. Furthermore, the result shows that about 47%~54% of maximum 1st principal stress in SOFC is caused by the mismatch of coefficients of thermal expansion (CTEs) among materials, while the other part of the maximum 1st principal stress is mainly caused by temperature gradient.  相似文献   
13.
Ultra-stable CsPbBr3 perovskite quantum dots (QDs) multicomponent glass with high transmittance was prepared by melt-quenching heat treatment. The average diameter of the CsPbBr3 QDs was ∼1.96 nm. The resulting glass displayed a high exciton binding energy of 362 ± 18 meV. Notably, these glass-encapsulated materials exhibited excellent resistance to heat, light, and water, superior to that of previously reported perovskite-based materials, and underwent an extremely low rate of Pb leaching during water immersion. Based on the glass, a high-performance white light-emitting diode (WLED) device was fabricated with Commission Internationale de L’Eclairage (CIE) coordinates of (0.3156, 0.3326) and color gamut of ∼113 % National Television Standards Committee (NTSC). The CsPbBr3 QDs glass without rare earth elements further acted as an optical gain medium, realizing up-conversion lasing with 980-nm laser excitation for the first time. The reversible linear fluorescence response indicates that the glass could be a potential candidate for temperature sensors.  相似文献   
14.
采用Gleeble-1500热力模拟机对铸态Ti-48Al-2Nb-2Cr合金进行高温变形热压缩试验,变形温度范围为1050~1200℃,应变速率范围为0.001~0.1s^-1,压缩变形量为60%。研究该合金高温变形温度和应变速率与流变应力之间的关系,计算了合金激活能,并建立了Ti-48Al-2Nb-2Cr合金的Arrhenius本构模型和多元线性回归的本构模型。结果表明,该合金的激活能随温度升高和应变速率增大而增大;Arrhenius本构模型的相关系数为0.98228,平均相对误差为9.97%,相对误差在10%以内的点只占62.0%;而采用多元线性回归本构模型的相关系数为0.99566,平均相对误差为4.76%,相对误差在10%以内的点占92.6%,本构精度较高。  相似文献   
15.
Thermal effects in a H2O and CO2 assisted tubular direct carbon solid oxide fuel cell (DC-SOFC) are numerically investigated. Parametric simulations are further conducted to study the effects of operating potential, the distance between carbon and anode, inlet gas temperature, and anode inlet gas flow rate on the thermal behaviors of the fuel cell. It is found that the fuel cell with H2O as gasification agent performs considerably better than the cell with CO2 as gasification agent in all cases. It is also found that the temperature field of the fuel cell is highly uneven. The breakdown of the heat sources in the fuel cell shows that the H2O assisted DC-SOFC has much higher heat generation and consumption than the CO2 assisted cell. Interestingly, a thermal neutral voltage is observed, at which no heating or cooling of the cell is needed. In addition, the distance between the anode and the carbon layer is required to be as small as possible, which improves the temperature uniformity of the fuel cell. The results of this study demonstrates the importance of thermal effects in DC-SOFCs and form a solid foundation for DC-SOFC thermal management.  相似文献   
16.
The need for electronics to operate at temperatures of 200°C and above continues to grow. These applications include avionics, aerospace, automotive, downhole drilling, mining, and many others. To satisfy this demand, a significant amount of research and development has been conducted. Despite the efforts, the number of new electronic components designed specifically for high-temperature operation is still relatively limited. In Low Temperature Co-fired Ceramic (LTCC) packages, LTCC materials are generally used as the host media for a number of pre-fabricated semiconductor components. As a result, reliability of the entire LTCC package largely depends on the performance of the least robust component. Ferro A6M-E and Ferro L8 are the two well-established and recognized LTCC dielectrics widely used for mid and high frequency LTCC applications, including several high reliability aerospace and defense applications that require demanding Mil-Spec qualifications. This study is our first attempt to characterize and understand basic high-temperature dielectric properties of these two commercial LTCC materials. The secondary objective is to initiate a dialogue in attempt to establish reliability requirements for LTCC packages dedicated for high-temperature operation.  相似文献   
17.
During seed storage in tall silos the low layers of rape seeds are exposed to static pressure exerted by the upper layers. This may cause deformation and damage of seeds found in the lower layers and losses of biologically active compounds. The aim of this study was to simulate under laboratory conditions the actual ecosystem found in industrial plants and to evaluate the effect of not only the temperature and moisture content, but also static pressure on degradation of phytosterols contained in rape seeds in the course of storage. Changes in phytosterol levels were assessed using GC-MS. During storage in all samples of seeds (7–16% moisture content) under the adopted conditions of overpressure (20–60 kPa) and temperature (25–35 °C) the total content of phytosterols decreased by 3–57%. The smallest losses in the total phytosterol contents (3–4%) were recorded during storage of seeds with a 7% moisture content, irrespective of the applied storage temperature (25–35 °C) and overpressure variants (20–60 kPa). The greatest losses of phytosterols (43–57%) were observed during storage of seeds with a 16% moisture content at a temperature of 35 °C, while the higher the applied overpressure, the greater these losses were. The study showed that the greatest influence on sterol content during storage was increased seed moisture, and subsequently the temperature and the pressure. Experimental results also showed that for seeds with higher moisture contents (13 and 16%) an increase in storage temperature from 30 to 35 °C intensifies losses of individual phytosterols much more markedly that an increase in temperature from 25 to 30 °C. Moreover it was observed that overpressure over 20 kPa enhanced losses of investigated phytosterols.  相似文献   
18.
《Ceramics International》2020,46(15):23972-23984
Cr3+ doped LaGaO3 phosphor was prepared by hydrothermal reaction method with post-annealing treatment. XRD pattern showed the pure orthorhombic phase of LaGaO3 at an annealing temperature of 1000 °C. TEM image showed the particles in the range 40-120 nm. The bandgap energy and Urbach tail increased in the doped sample as compared to the undoped sample as estimated from UV–visible diffuse reflectance spectra. PL excitation spectra showed peaks in UV, blue and orange regions. The emission spectra showed broadband with peaks in the NIR region due to emission from 4T2 and 2E states. The intermediate strength of the crystal field has been calculated from the estimated spectroscopic parameter. The average lifetime was found to be in the ms range. Afterglow decay was also recorded. From the low-temperature PL, the zero phonon line, stokes shift energy, vibrational energy and Huang-Rhys parameter were calculated. With rising the temperature, PL emission peak intensity and lifetime values decreased and FWHM increased because of increased numbers of electrons in 4T2 state and increasing non-radiative transition. Temperature-dependent peak intensity ratios and lifetime values were utilized for temperature sensing applications in below room temperature and above room temperature. The results indicate the possibility of present phosphor to be used as optical nanothermometer.  相似文献   
19.
The temperature-dependent electrical and charge transport characteristics of pentacene-based ambipolar thin-film transistors (TFTs) were investigated at temperatures ranging from 77 K to 300 K. At room temperature (RT), the pentacene-based TFTs exhibit balanced and high charge mobility with electron (μe) and hole (μh) mobilities, both at about 1.6 cm2/V s. However, at lower temperatures, higher switch-on voltage of n-channel operations, almost absent n-channel characteristics, and strong temperature dependence of μe indicated that electrons were more difficult to release from opposite-signed carriers than that of holes. We observed that μe and μh both followed an Arrhenius-type temperature dependence and exhibited two regimes with a transition temperature at approximately 210–230 K. At high temperatures, data were explained by a model in which charge transport was limited by a dual-carrier release and recombination process, which is an electric field-assisted thermal-activated procedure. At T < 210 K, the observed activation energy is in agreement with unipolar pentacene-based TFTs, suggesting a common multiple trapping and release process-dominated mechanism. Different temperature-induced characteristics between n- and p-channel operations are outlined, thereby providing important insights into the complexity of observing efficient electron transport in comparison with the hole of ambipolar TFTs.  相似文献   
20.
Capacitance–voltage (CV) characteristics of organic molecular semiconductors attracted much research interest recently, but no convincing physical mechanism has been established so far. In this work, the CV characteristics of pentacene-based devices have been systematically investigated at various frequencies. Only one peak occurs when the measuring frequency is less than 3 kHz or greater than 8 kHz. While within the frequency range between the two, two CV peaks are observed with quite different dependence on temperature, which suggests that the origins of these two CV peaks are respectively mobile holes and trapped carriers. This conclusion is also experimentally validated with the CV characteristics of intentionally doped devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号