首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2394篇
  免费   35篇
  国内免费   11篇
电工技术   9篇
综合类   17篇
化学工业   644篇
金属工艺   9篇
机械仪表   7篇
建筑科学   84篇
矿业工程   6篇
能源动力   1400篇
轻工业   54篇
水利工程   15篇
石油天然气   8篇
无线电   2篇
一般工业技术   45篇
冶金工业   36篇
原子能技术   5篇
自动化技术   99篇
  2024年   1篇
  2023年   32篇
  2022年   73篇
  2021年   76篇
  2020年   104篇
  2019年   117篇
  2018年   88篇
  2017年   49篇
  2016年   156篇
  2015年   115篇
  2014年   130篇
  2013年   143篇
  2012年   74篇
  2011年   323篇
  2010年   180篇
  2009年   173篇
  2008年   127篇
  2007年   113篇
  2006年   74篇
  2005年   55篇
  2004年   44篇
  2003年   44篇
  2002年   30篇
  2001年   12篇
  2000年   19篇
  1999年   13篇
  1998年   16篇
  1997年   6篇
  1996年   5篇
  1995年   3篇
  1994年   14篇
  1993年   2篇
  1992年   12篇
  1991年   4篇
  1990年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1982年   2篇
  1981年   2篇
排序方式: 共有2440条查询结果,搜索用时 140 毫秒
21.
To gain reliable data for the development of an empirical model for the prediction of the local high temperature corrosion potential in biomass fired boilers, online corrosion probe measurements have been carried out. The measurements have been performed in a specially designed fixed bed/drop tube reactor in order to simulate a superheater boiler tube under well-controlled conditions. The investigated boiler steel 13CrMo4-5 is commonly used as steel for superheater tube bundles in biomass fired boilers. Within the test runs the flue gas temperature at the corrosion probe has been varied between 625 °C and 880 °C, while the steel temperature has been varied between 450 °C and 550 °C to simulate typical current and future live steam temperatures of biomass fired steam boilers. To investigate the dependence on the flue gas velocity, variations from 2 m·s−1 to 8 m·s−1 have been considered. The empirical model developed fits the measured data sufficiently well. Therefore, the model has been applied within a Computational Fluid Dynamics (CFD) simulation of flue gas flow and heat transfer to estimate the local corrosion potential of a wood chips fired 38 MW steam boiler. Additionally to the actual state analysis two further simulations have been carried out to investigate the influence of enhanced steam temperatures and a change of the flow direction of the final superheater tube bundle from parallel to counter-flow on the local corrosion potential.  相似文献   
22.
Traditional fossil fuel overuse could lead to global warming and environmental pollution. As a renewable energy, biomass energy is a sustainable and low pollution carbon energy, which has a wide range of sources. Syngas production from biomass thermochemical conversion is a promising technology to realize effective utilization of the renewable energy. Syngas produced from gasification could be further converted into value-added chemicals via the method of Fischer-Tropsch synthesis. Syngas and CO2 methanation could transform renewable energy into feasible transport and high-density energy. However, tar formation and catalyst deactivation are the main problem during the biomass gasification and methanation. This review sheds light on the development of biomass gasification and syngas methanation. Firstly, we presented the common reactors and some other factors during gasification. Secondly, we provide a comprehensive introduction of the advanced active catalyst for gasification and syngas methanation. Finally, some representative large-scale and commercial plants and companies for biomass gasification were compared and discussed in details. Then the prospective developments in combination of gasification and methanation were concluded to give an outlook for biomass gasification and its downstream development.  相似文献   
23.
Gasification is considered as a key technology for the use of biomass. In order to promote this technology in the future, advanced, cost-effective, and highly efficient gasification processes and systems are required. This paper provides a detailed review on new concepts in biomass gasification.Concepts for process integration and combination aim to enable higher process efficiencies, better gas quality and purity, and lower investment costs. The recently developed UNIQUE gasifier which integrates gasification, gas cleaning and conditioning in one reactor unit is an example for a promising process integration. Other interesting concepts combine pyrolysis and gasification or gasification and combustion in single controlled stages. An approach to improve the economic viability and sustainability of the utilization of biomass via gasification is the combined production of more than one product. Polygeneration strategies for the production of multiple energy products from biomass gasification syngas offer high efficiency and flexibility.  相似文献   
24.
This study models the evolution of technologies for hydrogen production from the fermentation of biomass. We used a patent-clustering method to construct a technology network based on the mutual citation relationships between representative technology patents. Subsequently, we established an approximate matrix by analyzing the density of this citation network and identified the core technology cluster. We evaluated 2125 US patents from 2012 related to fermentative hydrogen production from biomass and divided the patents into four clusters according to their main technological areas. The largest cluster featured “the methods and systems that process useful gas by using waste and wastewater as feedstock and by enhancing biological (e.g., aerobic and anaerobic) processes,” indicating that this technology area currently represents the mainstream technology for such hydrogen production.  相似文献   
25.
Agroindustrial by-products are an abundant source of biocompounds that contain valuable nutrients, which are not exploited. In this work, lignocellulosic wastes (LW) were used in submerged fermentation (SmF) and solid-state fermentation (SSF) by Aspergillus niger NRRL3 to obtain valuable enzymes required in industries. SmF using soya bean hulls (SH), wheat bran (WB) and a by-product of wheat flour (F) produced the highest activities of endo-1,4-β-xylanase (Xyl) and endo-1,4-β-D-glucanase (EG) being at least 3 times lower than those obtained by SSF. The highest ratio of Xyl to EG was obtained in SmF with F. Xyl obtained by SmF with WB was the most thermally resistant. The enzymatic extract obtained in SmF using SH presented a high power of saccharification. The production of enzymes for further application such as bioethanol generation process revalue these LW and can help offset growing environmental problems.  相似文献   
26.
Supercritical water gasification (SCWG) technology is an efficient and clean method to utilize biomass wastes. But the real biomass is complicated, bringing difficulties for the research of reaction pathway. In this paper, xylose was selected as a model compound for hemicellulose and the experiment was conducted in quartz reactors. The degradation pathway of xylose in supercritical water (SCW) was discussed. The main intermediates included phenols, furans, arenes, organic acids, ketones and alcohols. Phenols and arenes were difficult to be gasified while furans, organic acids, ketones and alcohols could be easily gasified. The degradation pathways of glucose and guaiacol as model compounds for cellulose and lignin in SCW have also been discussed in previous studies. By comparing the experimental data, it is found that guaiacol was more difficult to be gasified than glucose and xylose. The main organics in residual liquid of xylose and glucose were furans, cyclic ketones, open-chain compounds, phenols and arenes while that of guaiacol were phenols, arenes and open-chain compounds. The degradation of phenols and arenes was the key step of SCWG of biomass model compounds.  相似文献   
27.
Depleting resources and popping environmental concerns instigate the development of sustainable and clean energy solutions. Amongst others, Hydrogen (H2) is an imperious alternative due to the lowest emissions, higher calorific value, and usability. It has great relevance in Pakistan due to sequester Agricultural biomass potential that can be used as feedstock for H2 production. So, this study estimates the H2 production potential from agricultural biomass (rice, sugarcane, cotton, wheat, and maize) of Punjab, Pakistan. In doing so, simulations are performed using Aspen Plus under various conditions to derive an optimal value of H2 output. The results indicate significant heterogeneity across districts and crop residues types. Therefore, the Geographic Information System (GIS) is used to draw the spatial distribution of optimal H2 production across crops and districts. The simulated results reveal that Punjab province has the potential to produce 2619.90 × 103 Metric tons (MT)/year H2, and the highest potential derives from sugarcane trash (1012.77 × 103 MT/year), followed by maize straw (433.67 × 103 MT/year). The estimated H2 potential (2.62 million MT/year) can be used in industries, transportation, and urea production as a sustainable alternative in Pakistan.  相似文献   
28.
High efficiency solar steam gasification of biomass is carried out in a prototype molten salt reactor for solar-only and solar-autothermal hybrid operation. Previous demonstration of the prototype 3-kW solar gasifier for steam gasification of cellulose at stoichiometric conditions demonstrated thermal efficiency of 44% during continuous operation at 1200 K. The present work expands the range of operating conditions to consider two challenges. Hybridization between solar and autothermal modes of operation is accomplished by adding oxygen directly to the reactor. Control of the H2:CO ratio of the product gas is accomplished through in-situ steam shifting. Hybridization stabilized temperatures for variations in radiative input as large as a 30% reduction in power, corresponding to conditions where both sensible and chemical heat demands for the process were fully met by exothermic heat release with no significant challenges. Peak efficiencies and carbon conversion values observed are 45% and 99.5% respectively. The resulting product gas stream composition was shifted from a hydrogen and carbon monoxide ratio of 1:1 with stoichiometric steam delivery to a ratio of 1.7:1 with steam at nine times the stoichiometric amount, only slightly lower than equilibrium predictions. The results demonstrate very favorable attributes for the molten salt reactor in a continuous fuel production process.  相似文献   
29.
《能源学会志》2019,92(4):1137-1148
Chemical looping gasification (CLG) is regarded as an innovative and promising technology for producing syngas. In this work, CLG of straw was conducted in a fixed bed reactor with Fe2O3 as the oxygen carrier, whose results led to conclusions that Fe2O3, the oxygen carrier, proved advantageous to the secondary gasification reaction and the formation of CO and CO2. It was also found that CO was further oxidized to CO2 at high Fe2O3/C molar ratio, which resulted in a decreased gasification efficiency and low heat value of syngas. Therefore, a conclusion was drawn that the most optimized Fe2O3/C molar ratio was 0.2. In addition, the alkali metals in the biomass evaporated as chlorine salts into gas phase and retained as alkali metal oxide at high temperature, resulting in coking, slagging and heating surface corrosion. In the mean time, the oxygen carrier mainly converted to Fe and sintering phenomenon was serious at high temperature despite the fact that high temperature promoted gas yield, carbon conversion efficiency and gasification efficiency. Therefore, the most optimized temperature was set to 800 °C in order to maximize gas yield and gasification efficiency.  相似文献   
30.
Hydrogen is a clean energy carrier that has the potential to mitigate the environmentally hazardous effects of fossil fuels. Hydrogen is mainly produced through the steam reforming of natural gas however it is also possible to produce hydrogen through the thermochemical conversion of various biomasses. In this study, three Aspen plus simulation models were developed to obtain hydrogen-rich gas products from biomass through catalytic steam reforming. The results obtained in this modeling study were compared to the experimental data obtained by the steam reforming of the sunflower meal, which is a waste product of the seed oil industry. Out of all three models, model II, in which all of the reactions are assumed to occur simultaneously and all species except for biomass are assumed to undergo combustion reactions, was the most successful one at predicting close results (93% similar) to experimental findings. Using this model, the effect of water:biomass feed ratio on the product yields was tested and the highest possible H2 yield (44.9 mol H2/kg sunflower meal) was achieved with a 15:1 water:biomass feed ratio at the constant temperature of 800 °C and atmospheric pressure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号