首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75689篇
  免费   7538篇
  国内免费   5536篇
电工技术   2376篇
技术理论   1篇
综合类   4969篇
化学工业   18947篇
金属工艺   7176篇
机械仪表   3949篇
建筑科学   2723篇
矿业工程   2176篇
能源动力   2033篇
轻工业   4919篇
水利工程   1122篇
石油天然气   2757篇
武器工业   614篇
无线电   9090篇
一般工业技术   11137篇
冶金工业   3365篇
原子能技术   1064篇
自动化技术   10345篇
  2024年   116篇
  2023年   1423篇
  2022年   1665篇
  2021年   2859篇
  2020年   2528篇
  2019年   2260篇
  2018年   2038篇
  2017年   2503篇
  2016年   2758篇
  2015年   2782篇
  2014年   4030篇
  2013年   4406篇
  2012年   5023篇
  2011年   6412篇
  2010年   4740篇
  2009年   5398篇
  2008年   4707篇
  2007年   5449篇
  2006年   4865篇
  2005年   4086篇
  2004年   3144篇
  2003年   2799篇
  2002年   2248篇
  2001年   1706篇
  2000年   1578篇
  1999年   1294篇
  1998年   999篇
  1997年   786篇
  1996年   743篇
  1995年   623篇
  1994年   589篇
  1993年   455篇
  1992年   367篇
  1991年   297篇
  1990年   225篇
  1989年   180篇
  1988年   119篇
  1987年   100篇
  1986年   110篇
  1985年   57篇
  1984年   40篇
  1983年   38篇
  1982年   46篇
  1981年   26篇
  1980年   38篇
  1979年   29篇
  1978年   10篇
  1977年   17篇
  1976年   16篇
  1974年   9篇
排序方式: 共有10000条查询结果,搜索用时 312 毫秒
21.
Redox (reduction–oxidation) reactions control many important biological processes in all organisms, both prokaryotes and eukaryotes. This reaction is usually accomplished by canonical disulphide-based pathways involving a donor enzyme that reduces the oxidised cysteine residues of a target protein, resulting in the cleavage of its disulphide bonds. Focusing on human vitamin K epoxide reductase (hVKORC1) as a target and on four redoxins (protein disulphide isomerase (PDI), endoplasmic reticulum oxidoreductase (ERp18), thioredoxin-related transmembrane protein 1 (Tmx1) and thioredoxin-related transmembrane protein 4 (Tmx4)) as the most probable reducers of VKORC1, a comparative in-silico analysis that concentrates on the similarity and divergence of redoxins in their sequence, secondary and tertiary structure, dynamics, intraprotein interactions and composition of the surface exposed to the target is provided. Similarly, hVKORC1 is analysed in its native state, where two pairs of cysteine residues are covalently linked, forming two disulphide bridges, as a target for Trx-fold proteins. Such analysis is used to derive the putative recognition/binding sites on each isolated protein, and PDI is suggested as the most probable hVKORC1 partner. By probing the alternative orientation of PDI with respect to hVKORC1, the functionally related noncovalent complex formed by hVKORC1 and PDI was found, which is proposed to be a first precursor to probe thiol–disulphide exchange reactions between PDI and hVKORC1.  相似文献   
22.
An improved glucose-chelator-albumin bioconjugate (GluCAB) derivative, GluCAB-2Mal, has been synthesized and studied for in vivo 64Cu-PET/CT imaging in breast cancer mice models together with its first-generation analogue GluCAB-1Mal. The radioligand works on the principle of tumor targeting through the enhanced permeability and retention (EPR) effect with a supportive role played by glucose metabolism. [64Cu]Cu-GluCAB-2Mal (99 % RCP) exhibited high serum stability with immediate binding to serum proteins. In vivo experiments for comparison between tumor targeting of [64Cu]Cu-GluCAB-2Mal and previous-generation [64Cu]Cu-GluCAB-1Mal encompassed microPET/CT imaging and biodistribution analysis in an allograft E0771 breast cancer mouse model. Tumor uptake of [64Cu]Cu-GluCAB-2Mal was clearly evident with twice as much accumulation as compared to its predecessor and a tumor/muscle ratio of up to 5 after 24 h. Further comparison indicated a decrease in liver accumulation for [64Cu]Cu-Glu-CAB-2Mal.  相似文献   
23.
Tumor cell aggregation is critical for cell survival following the loss of extracellular matrix attachment and dissemination. However, the underlying mechanotransduction of clustering solitary tumor cells is poorly understood, especially in non-small cell lung cancers (NSCLC). Here, we examined whether cell surface protrusions played an important role in facilitating the physical contact between floating cells detached from a substrate. We employed poly-2-hydroxyethyl methacrylate-based 3D culture methods to mimic in vivo tumor cell cluster formation. The suprastructural analysis of human NSCLC A549 cell spheroids showed that finger-like protrusions clung together via the actin cytoskeleton. Time-lapse holotomography demonstrated that the finger-like protrusions of free-floating cells in 3D culture displayed exploratory coalescence. Global gene expression analysis demonstrated that the genes in the organic hydroxyl transport were particularly enriched in the A549 cell spheroids. Particularly, the knockdown of the water channel aquaporin 3 gene (AQP3) impaired multicellular aggregate formation in 3D culture through the rearrangement of the actomyosin cytoskeleton. Moreover, the cells with reduced levels of AQP3 decreased their transmigration. Overall, these data indicate that cell detachment-upregulated AQP3 contributes to cell surface protrusions through actomyosin cytoskeleton remodeling, causing the aggressive aggregation of free-floating cells dependent on the property of the substratum and collective metastasis.  相似文献   
24.
An easy albeit quite effective deionization suspension treatment was adopted to alleviate the detrimental effects related to the hydrolysis of Y2O3 in an aqueous medium. Fabrication of highly transparent Y2O3 ceramics with a fine grain size via air pre-sintering and post–hot isostatic pressing (HIP) treatment without using any sintering additive was achieved using the treated suspensions. The hydrolysis issue of Y2O3 powder in an aqueous medium was effectively alleviated by using deionization treatment, and a well-dispersed suspension with a low concentration of dissolved Y3+ species was obtained. The dispersed suspensions were consolidated by the centrifugal casting method, and the green bodies derived from the suspension of 35.0 vol% solid loading showed an improved homogeneity with a relative density of 52.1%. Fully dense Y2O3 transparent ceramic with high transparency was obtained by pre-sintering consolidated green compacts at a low temperature of 1400°C for 16 h in air followed by a post-HIP treatment at 1550°C for 2 h under 200 MPa pressure. The sample had a fine average grain size of 690 nm. The in-line transmittance of the sample reached 83.3% and 81.8% at 1100 nm and 800 nm, respectively, very close to the theoretical values of Y2O3.  相似文献   
25.
Multiple lines of evidence support the pathogenic role of maternal immune activation (MIA) in the occurrence of the schizophrenia-like disturbances in offspring. While in the brain the homeostatic role of neuron-microglia protein systems is well documented, the participation of the CX3CL1-CX3CR1 and CD200-CD200R dyads in the adverse impact of MIA often goes under-recognized. Therefore, in the present study, we examined the effect of MIA induced by polyinosinic:polycytidylic acid (Poly I:C) on the CX3CL1-CX3CR1 and CD200-CD200R axes, microglial trajectory (MhcII, Cd40, iNos, Il-1β, Tnf-α, Il-6, Arg1, Igf-1, Tgf-β and Il-4), and schizophrenia-like behaviour in adult male offspring of Sprague-Dawley rats. Additionally, according to the “two-hit” hypothesis of schizophrenia, we evaluated the influence of acute challenge with Poly I:C in adult prenatally MIA-exposed animals on the above parameters. In the present study, MIA evoked by Poly I:C injection in the late period of gestation led to the appearance of schizophrenia-like disturbances in adult offspring. Our results revealed the deficits manifested as a diminished number of aggressive interactions, presence of depressive-like episodes, and increase of exploratory activity, as well as a dichotomy in the sensorimotor gating in the prepulse inhibition (PPI) test expressed as two behavioural phenotypes (MIAPPI-low and MIAPPI-high). Furthermore, in the offspring rats subjected to a prenatal challenge (i.e., MIA) we noticed the lack of modulation of behavioural changes after the additional acute immune stimulus (Poly I:C) in adulthood. The important finding reported in this article is that MIA affects the expression and levels of the neuron-microglia proteins in the frontal cortex and hippocampus of adult offspring. We found that the changes in the CX3CL1-CX3CR1 axis could affect microglial trajectory, including decreased hippocampal mRNA level of MhcII and elevated cortical expression of Igf-1 in the MIAPPI-high animals and/or could cause the up-regulation of an inflammatory response (Il-6, Tnf-α, iNos) after the “second hit” in both examined brain regions and, at least in part, might differentiate behavioural disturbances in adult offspring. Consequently, the future effort to identify the biological background of these interactions in the Poly I:C-induced MIA model in Sprague-Dawley rats is desirable to unequivocally clarify this issue.  相似文献   
26.
Accurate measurements of radiation dose are essential prerequisites for the safe and effective use of ionizing radiation in diagnostic and therapeutic medical applications. Recently, dosimeters based on organic polymers have been developed for this purpose. In this work, Poly(3-hexylthiophene-2,5-diyl) (P3HT) based organic diodes were evaluated as potential radiation dosimeters by quantifying the radiation-induced photocurrent under various measurement conditions. Control devices were fabricated in which the P3HT was replaced by polystyrene (PS) for the purpose of quantifying the non-photocurrent contribution to the measured signal. Net photocurrent was determined by subtracting the signal from the PS devices from the signal in the P3HT devices under identical measurement conditions. The responses of these devices were tested in various beam qualities: 100 kVp, 180 kVp, 300 kVp and 6 MV, 18 MV photons. The influences of electric field, film thickness and dose rate on dosimeter sensitivity were investigated. The diodes produced a linear increase in current with increasing dose rate. They demonstrated an increase in sensitivity with increased instantaneous dose rate and an increase in sensitivity at the lowest average dose rates studied here. The sensitivities for different energies were 22.9 nC/Gy, 21.8 nC/Gy and 21.4 nC/Gy for 100 kVp, 180 kVp and 300 kVp, respectively; and 14.5 nC/Gy, 14.7 nC/Gy for 6 MV and 18 MV, respectively for device with P3HT thickness 29 μm.  相似文献   
27.
The sodium-activated potassium channel Slack (KNa1.1, Slo2.2, or Kcnt1) is highly expressed in populations of sensory neurons, where it mediates the sodium-activated potassium current (IKNa) and modulates neuronal activity. Previous studies suggest that Slack is involved in the processing of neuropathic pain. However, mechanisms underlying the regulation of Slack activity in this context are poorly understood. Using whole-cell patch-clamp recordings we found that Slack-mediated IKNa in sensory neurons of mice is reduced after peripheral nerve injury, thereby contributing to neuropathic pain hypersensitivity. Interestingly, Slack is closely associated with ATP-sensitive P2X3 receptors in a population of sensory neurons. In vitro experiments revealed that Slack-mediated IKNa may be bidirectionally modulated in response to P2X3 activation. Moreover, mice lacking Slack show altered nocifensive responses to P2X3 stimulation. Our study identifies P2X3/Slack signaling as a mechanism contributing to hypersensitivity after peripheral nerve injury and proposes a potential novel strategy for treatment of neuropathic pain.  相似文献   
28.
The modulation of protein-protein interactions (PPIs) by small molecules represents a valuable strategy for pharmacological intervention in several human diseases. In this context, computer-aided drug discovery techniques offer useful resources to predict the network of interactions governing the recognition process between protein partners, thus furnishing relevant information for the design of novel PPI modulators. In this work, we focused our attention on the MUC1-CIN85 complex as a crucial PPI controlling cancer progression and metastasis. MUC1 is a transmembrane glycoprotein whose extracellular domain contains a variable number of tandem repeats (VNTRs) regions that are highly glycosylated in normal cells and under-glycosylated in cancer. The hypo-glycosylation fosters the exposure of the backbone to new interactions with other proteins, such as CIN85, that alter the intracellular signalling in tumour cells. Herein, different computational approaches were combined to investigate the molecular recognition pattern of MUC1-CIN85 PPI thus unveiling new structural information useful for the design of MUC1-CIN85 PPI inhibitors as potential anti-metastatic agents.  相似文献   
29.
The Fe/C/SiCN composite ceramics were synthesized by polymer-derived method to obtain the integration of structure and functions. The electromagnetic waves (EMW) absorption properties at X and Ku bands were investigated. The addition of nano-sized Fe particles improved the magnetic loss and impedance matching, and the carbon nanotubes generated by the iron in-situ catalysis increased the internal relaxation polarization and interfacial polarization, which together improved the EMW absorption properties significantly. In particular, the Fe/C/SiCN-9 showed the optimum reflection loss (RL) of ?31.06 dB at 10.03 GHz with an effective absorption bandwidth (EAB, RL < ?10 dB) of 3.03 GHz at 2.51 mm, indicating the excellent EMW absorption properties of Fe/C/SiCN composite ceramics.  相似文献   
30.
Tissue engineering requires the precise positioning of mammalian cells and biomaterials on substrate surfaces or in preprocessed scaffolds. Although the development of 2D and 3D bioprinting technologies has made substantial progress in recent years, precise, cell-friendly, easy to use, and fast technologies for selecting and positioning mammalian cells with single cell precision are still in need. A new laser-based bioprinting approach is therefore presented, which allows the selection of individual cells from complex cell mixtures based on morphology or fluorescence and their transfer onto a 2D target substrate or a preprocessed 3D scaffold with single cell precision and high cell viability (93–99% cell survival, depending on cell type and substrate). In addition to precise cell positioning, this approach can also be used for the generation of 3D structures by transferring and depositing multiple hydrogel droplets. By further automating and combining this approach with other 3D printing technologies, such as two-photon stereolithography, it has a high potential of becoming a fast and versatile technology for the 2D and 3D bioprinting of mammalian cells with single cell resolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号