首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6091篇
  免费   159篇
  国内免费   139篇
电工技术   306篇
技术理论   1篇
综合类   85篇
化学工业   795篇
金属工艺   195篇
机械仪表   471篇
建筑科学   194篇
矿业工程   10篇
能源动力   919篇
轻工业   67篇
水利工程   13篇
石油天然气   13篇
武器工业   17篇
无线电   617篇
一般工业技术   826篇
冶金工业   87篇
原子能技术   48篇
自动化技术   1725篇
  2024年   3篇
  2023年   88篇
  2022年   121篇
  2021年   174篇
  2020年   159篇
  2019年   137篇
  2018年   132篇
  2017年   206篇
  2016年   243篇
  2015年   270篇
  2014年   412篇
  2013年   385篇
  2012年   321篇
  2011年   557篇
  2010年   374篇
  2009年   445篇
  2008年   414篇
  2007年   410篇
  2006年   329篇
  2005年   261篇
  2004年   184篇
  2003年   195篇
  2002年   128篇
  2001年   68篇
  2000年   59篇
  1999年   53篇
  1998年   51篇
  1997年   39篇
  1996年   33篇
  1995年   32篇
  1994年   25篇
  1993年   18篇
  1992年   16篇
  1991年   13篇
  1990年   12篇
  1989年   9篇
  1988年   7篇
  1987年   1篇
  1986年   2篇
  1984年   1篇
  1981年   1篇
  1974年   1篇
排序方式: 共有6389条查询结果,搜索用时 78 毫秒
21.
A hybrid fluidized-bed bioreactor for water purification was proposed and analyzed. It is a novel type of bioreactor characterized by hitherto unknown stationary and dynamic features. Steady-state characteristics of this hybrid bioreactor with external liquid circulation are presented. A quantitative analysis of steady-state properties of the bioreactor was performed with the aid of an original mathematical model developed for a double-substrate aerobic microbiological process. A steady-state analysis of aerobic processes characterized by different oxygen demand was performed. The effect of essential parameters was evaluated, including carbonaceous substrate concentration in the feed stream to the apparatus, aeration intensity, total residence time of a liquid in the bioreactor, and height of the bed of fine carrier particles.  相似文献   
22.
This paper presents an experimental study of a standalone hybrid microgrid system. The latter is dedicated to remote area applications. The system is a compound that utilizes renewable sources that are Wind Generator (WG), Solar Array (SA), Fuel Cell (FC) and Energy Storage System (ESS) using a battery. The power electronic converters play a very important role in the system; they optimize the control and energy management techniques of the various sources. For wind and solar subsystem, the speed and Single Input Fuzzy Logic (SIFL) controllers are used respectively to harvest the maximum power point tracking (MPPT). To maintain a balance of energy in the hybrid system, an energy management strategy based on the battery state of charge (SOC) has been developed and implemented experimentally. The AC output voltage regulation was achieved using a Proportional Integral (PI) controller to supply a resistive load with constant amplitude and frequency. According to the obtained performances, it was concluded that the proposed system is very promising for potential applications in hybrid renewable energy management systems.  相似文献   
23.
24.
25.
We report herein a fast and scalable approach to the synthesis of MO/CNT/Fe (MCI) hybrid nanostructures via microwave irradiation of MXene under ambient condition. The effect of three arcing materials, CNT, graphite (C), and carbon fiber (Cf), on the growth of carbon nanotubes on MXene-derived metal oxides were investigated. The resulted MCI nanostructures were tested as anodes in LIBs, all exhibiting better electrochemical performance than that of pristine Ti3C2. Remarkably, MCI-Cf delivered reversible capacities of 430?mA?h?g?1 and 175?mA?h?g?1 at 1?A?g?1 and 10?A?g?1, respectively, which is much higher than that of commercial graphite at high rates. The findings in this work open new exciting opportunities to developing hybrid electrode materials with high specific capacity for energy conversion and storage.  相似文献   
26.
Biologically structured carbon/cerium dioxide materials are synthesized by biological templates. The microscopic morphology, structure and the effects of different oxidation temperatures on materials are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) ultraviolet-visible light spectrum (UV–Vis) and X-ray Photoelectron Spectroscopy (XPS). Moreover, by splitting water under visible light irradiation, the hydrogen production is measured to test the photocatalytic property of these materials. The results show that materials made with bamboo biological templates which are immersed in 0.1 mol L?1 of cerium nitrate solution, then carbonizated in nitrogen (700 °C) and oxidized in air (500–600 °C), can obtain the biological structure of bamboo leaves. The product is in the composition of hybrid multilayer membrane, which one is carbon membrane form plant cell carbonation and another is ceria membrane by nanoparticle self assembly. The best oxidation temperature is 550 °C and the band gap of carbon/cerium dioxide materials synthesized at this optimum oxidation temperature could be reduced to 2.75 eV. After exposure to visible light for 6 h, the optimal hydrogen production is about 302 μmol g?1, which is much higher than that of pure CeO2.  相似文献   
27.
Steel materials suffer extensive creep by the application at temperatures of about 700?°C and pressures about 350?bar in a power plant environment. The presented concept overwraps a steel pipe with a ceramic matrix composite (CMC) jacket in order to support the steel pipe and provide high temperature strength. Finite Element simulations show the influence of the wall thickness of CMC jacket and the coefficient of thermal expansion (CTE) on circumferential stresses within the hybrid metal ceramic pipe. Suitable fiber and matrix materials were studied, composites fabricated and mechanical properties determined. Finally, a prototype was designed in order to confirm the feasibility of the concept. The lifetime of a pure steel pipe was increased by more than four-fold by the additional CMC jacket.  相似文献   
28.
The direct Z-scheme photocatalysts for overall water decomposition have aroused much concern on account of their strong redox ability and efficient separation of photogenerated electron-hole pairs. In the present work, we have constructed the two dimensional (2D) van der Waals (vdW) MoSe2/SnS2 heterojunction and investigated its electronical and optical properties by applying hybrid functional calculations. The calculated band structures have implied that the MoSe2/SnS2 heterostructure as a direct Z-scheme photocatalyst can make the best of visible light. The induced built-in electric field can effectively improve the separation efficiency of the photoinduced carriers. Moreover, compared with the MoSe2 and SnS2 monolayers, the absorption intensity of MoSe2/SnS2 heterojunction is reinforced in the visible light range. Therefore, MoSe2/SnS2 nanocomposite shows a bright application prospect as a direct Z-scheme visible-light-driven photocatalyst for overall water splitting.  相似文献   
29.
A technical-economic investigation based on mathematical modeling, simulation, and optimization approach is employed in this research to assemble an island combined renewable energy systems (CRES) consists of solar PV/Wind/Fuel Cell (FC) of a small-scale countryside area in Egypt. The intent of the proposed island CRES is to boost the share of renewable energy in the energy mix and to study the possibility of using fuel cells as a storage/backup system instead of using battery banks.Three combinations of CRES are presented in this research to select the most optimum one. The combinations of the hybrid systems are PV/FC, PV/WT/FC, and WT/FC. The performance and the total cost of the suggested CRES were optimized using Firefly Algorithm (FA). The results obtained from the FA are compared with those obtained from the Shuffled Frog Leaping Algorithm (SFLA) and the particle swarm optimization (PSO).The selected case study area with latitude and longitude of (29.0214 N, 30.8714 E) is identified for economic viability in this work.The simulation outcomes show that the solar PV/Wind/Fuel Cell combination incorporated with an electrolyzer for hydrogen production grants the excellent performance. The proposed system is economically viable with a levelized cost of energy of 0.47 $/kWh.  相似文献   
30.
Currently, there is a growing interest in the application of silicon-based technologies for the development of advanced hybrid organic–inorganic coatings with strong weatherability. In this study, the sol–gel process is used to prepare such coatings on glass and their resistance to weathering effects is assessed afterwards. Various sols were prepared by mixing a silica-based inorganic matrix (tetraethyl orthosilicate) with different quantities of silica alkoxides functionalised with various organic groups. Subsequently, the sols were dip-coated onto glass samples at low temperatures without any heat treatment. The coatings prepared were analysed before and after three model ageing tests simulating various weathering parameters. After ageing, the best performing coatings showed good overall homogeneity and transparency (optical microscopy, SEM), improved water repellency and adhesion to the glass substrate (static contact angle measurements, cross-cut tape tests) and no colour or chemical composition changes (UV–VIS, FTIR). Compared with commercial hybrid silica products, the alkyl- and methacryloxy-functionalised silica coatings particularly displayed improved homogeneity, elasticity and barrier properties. Thus, these low temperature coatings, easily applicable to thin films, appear to fulfil the main requirements for the protection of the glass exposed to weathering phenomena.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号