首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   341篇
  免费   47篇
  国内免费   11篇
电工技术   2篇
综合类   18篇
建筑科学   10篇
矿业工程   13篇
能源动力   7篇
轻工业   11篇
水利工程   49篇
无线电   12篇
一般工业技术   2篇
冶金工业   1篇
原子能技术   1篇
自动化技术   273篇
  2023年   3篇
  2022年   12篇
  2021年   12篇
  2020年   9篇
  2019年   16篇
  2018年   16篇
  2017年   16篇
  2016年   13篇
  2015年   16篇
  2014年   9篇
  2013年   20篇
  2012年   22篇
  2011年   35篇
  2010年   27篇
  2009年   36篇
  2008年   29篇
  2007年   26篇
  2006年   27篇
  2005年   22篇
  2004年   13篇
  2003年   12篇
  2002年   2篇
  2001年   1篇
  1986年   5篇
排序方式: 共有399条查询结果,搜索用时 31 毫秒
21.
We used land surface temperature (LST) algorithms and NDVI values to estimate changes in vegetation in the European continent between 1982 and 1999 from the Pathfinder AVHRR Land (PAL) dataset. These two parameters are monitored through HANTS (Harmonic ANalysis of Time Series) software, which allows the simultaneous observation of mean value, first harmonic amplitude and phase behaviors in the same image. These results for each complete year of data show the effect of volcanic aerosols and orbital drift on PAL data. Comparison of time series of HANTS cloud-free time series with the original time series for various land cover proves that this software is useful for LST analysis, although primarily designed for NDVI applications. Comparison of yearly averages of HANTS LST over the whole Europe with air temperature confirms the validity of the results. Maps of the evolution for both parameters between periods 1982/1986 and 1995/1999 have been elaborated: NDVI data show the well confirmed trend of increase over Europe (up to 0.1 in NDVI), Southern Europe seeing a decrease in NDVI (− 0.02). LST averages stay stable or slightly decrease (up to − 1.5 K) over the whole continent, except for southern areas for which the increase is up to 2.5 K. These results evidence that arid and semi-arid areas of Southern Europe have become more arid, the rest of Europe seeing an increase in its wood land proportion, while seasonal amplitude in Northern Europe has decreased.  相似文献   
22.
Annual, inter-annual and long-term trends in time series derived from remote sensing can be used to distinguish between natural land cover variability and land cover change. However, the utility of using NDVI-derived phenology to detect change is often limited by poor quality data resulting from atmospheric and other effects. Here, we present a curve fitting methodology useful for time series of remotely sensed data that is minimally affected by atmospheric and sensor effects and requires neither spatial nor temporal averaging. A two-step technique is employed: first, a harmonic approach models the average annual phenology; second, a spline-based approach models inter-annual phenology. The principal attributes of the time series (e.g., amplitude, timing of onset of greenness, intrinsic smoothness or roughness) are captured while the effects of data drop-outs and gaps are minimized. A recursive, least squares approach captures the upper envelope of NDVI values by upweighting data values above an average annual curve. We test this methodology on several land cover types in the western U.S., and find that onset of greenness in an average year varied by less than 8 days within land cover types, indicating that the curve fit is consistent within similar systems. Between 1990 and 2002, temporal variability in onset of greenness was between 17 and 35 days depending on the land cover type, indicating that the inter-annual curve fit captures substantial inter-annual variability. Employing this curve fitting procedure enhances our ability to measure inter-annual phenology and could lead to better understanding of local and regional land cover trends.  相似文献   
23.
“北京一号”小卫星(BJ-1)是一颗拥有高时频、覆盖宽度大等优势的对地观测小卫星。运用BJ-1遥感数据,以密云水库流域为研究区域,通过NDVI像元二分法、三波段梯度差法估算其植被覆盖度,并尝试利用重归一化植被指数(RDVI)法进行植被覆盖度估算。通过对3种方法估算结果的比较发现:RDVI法的估算结果与实测值的吻合度较高,而三波段梯度差法则出现较大误差,NDVI像元二分法的估算结果精度居中。结果表明:运用BJ-1数据,采用RDVI法可以有效地进行连续的、大范围的植被覆盖度估算。  相似文献   
24.
Structural and functional analyses of ecosystems benefit when high accuracy vegetation coverages can be derived over large areas. In this study, we utilize IKONOS, Landsat 7 ETM+, and airborne scanning light detection and ranging (lidar) to quantify coniferous forest and understory grass coverages in a ponderosa pine (Pinus ponderosa) dominated ecosystem in the Black Hills of South Dakota. Linear spectral mixture analyses of IKONOS and ETM+ data were used to isolate spectral endmembers (bare soil, understory grass, and tree/shade) and calculate their subpixel fractional coverages. We then compared these endmember cover estimates to similar cover estimates derived from lidar data and field measures. The IKONOS-derived tree/shade fraction was significantly correlated with the field-measured canopy effective leaf area index (LAIe) (r2=0.55, p<0.001) and with the lidar-derived estimate of tree occurrence (r2=0.79, p<0.001). The enhanced vegetation index (EVI) calculated from IKONOS imagery showed a negative correlation with the field measured tree canopy effective LAI and lidar tree cover response (r2=0.30, r=−0.55 and r2=0.41, r=−0.64, respectively; p<0.001) and further analyses indicate a strong linear relationship between EVI and the IKONOS-derived grass fraction (r2=0.99, p<0.001). We also found that using EVI resulted in better agreement with the subpixel vegetation fractions in this ecosystem than using normalized difference of vegetation index (NDVI). Coarsening the IKONOS data to 30 m resolution imagery revealed a stronger relationship with lidar tree measures (r2=0.77, p<0.001) than at 4 m resolution (r2=0.58, p<0.001). Unmixed tree/shade fractions derived from 30 m resolution ETM+ imagery also showed a significant correlation with the lidar data (r2=0.66, p<0.001). These results demonstrate the power of using high resolution lidar data to validate spectral unmixing results of satellite imagery, and indicate that IKONOS data and Landsat 7 ETM+ data both can serve to make the important distinction between tree/shade coverage and exposed understory grass coverage during peak summertime greenness in a ponderosa pine forest ecosystem.  相似文献   
25.
26.
Air temperature can be estimated from remote sensing by combining information in thermal infrared and optical wavelengths. The empirical TVX algorithm is based on an estimated linear relationship between observed Land Surface Temperature (LST) and a Spectral Vegetation Index (NDVI). Air temperature is assumed to be equal to the LST corresponding to the effective full vegetation cover, and is found by extrapolating the line to a maximum value of NDVImax. The algorithm has been tested and reported in the literature previously. However, the effect of vegetation types and climates and the potential variation in NDVI of the effective full cover has not been subject for investigation. The present study proposes a novel methodology to estimate NDVImax that uses observed air temperature to calibrate the NDVImax for each vegetation type. To assess the validity of this methodology, we have compared the accuracy of estimates using the new NDVImax and the previous NDVImax that have been proposed in literature with MSG-SEVIRI images in Spain during the year 2005. In addition, a spatio-temporal assessment of residuals has been performed to evaluate the accuracy of retrievals in terms of daily and seasonal variation, land cover, landscape heterogeneity and topography. Results showed that the new calibrated NDVImax perform well, with a Mean Absolute Error ranging between 2.8 °C and 4 °C. In addition, vegetation-specific NDVImax improve the accuracy compared with a unique NDVImax.  相似文献   
27.
Remotely sensed vegetation indices are widely used to detect greening and browning trends; especially the global coverage of time-series normalized difference vegetation index (NDVI) data which are available from 1981. Seasonality and serial auto-correlation in the data have previously been dealt with by integrating the data to annual values; as an alternative to reducing the temporal resolution, we apply harmonic analyses and non-parametric trend tests to the GIMMS NDVI dataset (1981-2006). Using the complete dataset, greening and browning trends were analyzed using a linear model corrected for seasonality by subtracting the seasonal component, and a seasonal non-parametric model. In a third approach, phenological shift and variation in length of growing season were accounted for by analyzing the time-series using vegetation development stages rather than calendar days. Results differed substantially between the models, even though the input data were the same. Prominent regional greening trends identified by several other studies were confirmed but the models were inconsistent in areas with weak trends. The linear model using data corrected for seasonality showed similar trend slopes to those described in previous work using linear models on yearly mean values. The non-parametric models demonstrated the significant influence of variations in phenology; accounting for these variations should yield more robust trend analyses and better understanding of vegetation trends.  相似文献   
28.
Satellite remote sensing has the potential to contribute to plant phenology monitoring at spatial and temporal scales relevant for regional and global scale studies. Historically, temporal composites of satellite data, ranging from 8 days to 16 days, have been used as a starting point for satellite-derived phenology data sets. In this study we assess how the temporal resolution of such composites affects the estimation of the start of season (SOS) by: 1) calibrating a relationship between satellite derived SOS with in situ leaf unfolding (LU) of trembling aspen (Populus tremuloides) across Canada and 2) quantifying the sensitivity of calibrated satellite SOS estimates and trends, over Canadian broadleaf forests, to the temporal resolution of NDVI data. SOS estimates and trends derived from daily NDVI data were compared to SOS estimates and trends derived from multiday NDVI composites that retain the exact date of the maximum NDVI value or that assume the midpoint of the multiday interval as the observation date. In situ observations of LU dates were acquired from the PlantWatch Canada network. A new Canadian database of cloud and snow screened daily 1-km resolution National Oceanic and Atmospheric Administration advanced very high resolution radiometer surface reflectance images was used as input satellite data. The mean absolute errors of SOS dates with respect to in situ LU dates ranged between 13 and 40 days. SOS estimates from NDVI composites that retain the exact date of the maximum NDVI value had smaller errors (~ 13 to 20 days). The sensitivity analysis reinforced these findings: SOS estimates from NDVI composites that use the exact date had smaller absolute deviations from the LU date (0 to − 5 days) than the SOS estimates from NDVI composites that use the midpoint (− 2 to − 27 days). The SOS trends between 1985 and 2007 were not sensitive to the temporal resolution or compositing methods. However, SOS trends at individual ecozones showed significant differences with the SOS trends from daily NDVI data (Taiga plains and the Pacific maritime zones). Overall, our results suggest that satellite based estimates of vegetation green-up dates should preferably use sub-sampled NDVI composites that include the exact observation date of the maximum NDVI to minimize errors in both, SOS estimates and SOS trend analyses. For trend analyses alone, any of the compositing methods could be used, preferably with composite intervals of less than 28 days. This is an important finding, as it suggests that existing long-term 10-day or 15-day NDVI composites could be used for SOS trend analyses over broadleaf forests in Canada or similar areas. Future studies will take advantage of the growing in situ phenology networks to improve the validation of satellite derived green-up dates.  相似文献   
29.
冬小麦播期的卫星遥感及应用   总被引:8,自引:1,他引:8  
播种日期对冬小麦生长发育、产量和品质形成均有一定的影响。利用2003年拔节期的Landsat TM卫星的NDVI数据.成功地监测了冬小麦的播种日期。提出了基于NDVI和播种日期的冬小麦的遥感估产的优化模型,并在抽穗期至乳熟期的3次生育期的遥感估产中得到了成功验证与应用。利用出粉率与播种日期的显相关特性,采用拔节期的Landsat TM卫星的NDVI数据,成功预测了小麦籽粒的出粉率。  相似文献   
30.
The bi-directional reflectance distribution function (BRDF) alters the seasonal and inter-annual variations exhibited in Advanced Very High Resolution Radiometer (AVHRR) Normalized Difference Vegetation Index (NDVI) data and this hampers the detection and, consequently, the interpretation of temporal variations in land-surface vegetation. The magnitude and sign of bi-directional effects in commonly used AVHRR data sets depend on land-surface properties, atmospheric composition and the type of atmospheric correction that is applied to the data. We develop an approach to estimate BRDF effects in AVHRR NDVI time series using the Moderate Resolution Imaging Spectrometer (MODIS) BRDF kernels and subsequently adjust NDVI time series to a standard illumination and viewing geometry. The approach is tested on NDVI time series that are simulated for representative AVHRR viewing and illumination geometry. These time series are simulated with a canopy radiative transfer model coupled to an atmospheric radiative transfer model for four different land cover types—tropical forest, boreal forest, temperate forest and grassland - and five different atmospheric conditions - turbid and clear top-of-atmosphere, turbid and clear top-of-atmosphere with a correction for ozone absorption and Rayleigh scattering applied (Pathfinder AVHRR Land data) and ground-observations (fully corrected for atmospheric effects). The simulations indicate that the timing of key phenological stages, such as start and end of growing season and time of maximum greenness, is affected by BRDF effects. Moreover, BRDF effects vary with latitude and season and increase over the time of operation of subsequent NOAA satellites because of orbital drift. Application of the MODIS kernels on simulated NVDI data results in a 50% to 85% reduction of BRDF effects. When applied to the global 18-year global Normalized Difference Vegetation Index (NDVI) Pathfinder data we find BRDF effects similar in magnitude to those in the simulations. Our analysis of the global data shows that BRDF effects are especially large in high latitudes; here we find that in at least 20% of the data BRDF errors are too large for accurate detection of seasonal and interannual variability. These large BRDF errors tend to compensate, however, when averaged over latitude.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号