首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   341篇
  免费   47篇
  国内免费   11篇
电工技术   2篇
综合类   18篇
建筑科学   10篇
矿业工程   13篇
能源动力   7篇
轻工业   11篇
水利工程   49篇
无线电   12篇
一般工业技术   2篇
冶金工业   1篇
原子能技术   1篇
自动化技术   273篇
  2023年   3篇
  2022年   12篇
  2021年   12篇
  2020年   9篇
  2019年   16篇
  2018年   16篇
  2017年   16篇
  2016年   13篇
  2015年   16篇
  2014年   9篇
  2013年   20篇
  2012年   22篇
  2011年   35篇
  2010年   27篇
  2009年   36篇
  2008年   29篇
  2007年   26篇
  2006年   27篇
  2005年   22篇
  2004年   13篇
  2003年   12篇
  2002年   2篇
  2001年   1篇
  1986年   5篇
排序方式: 共有399条查询结果,搜索用时 15 毫秒
31.
随着计算机技术的不断发展,软件的规模也越来越大。一张遥感图像可达到数G以上,处理起来有时候可能需要数个小时。因此,针对这些大数据量的系统来说,加速比提高一倍,就会使运行时间减少几个小时,这对于系统来说就是一种非常可观的现实,非常值得去实现。本文将以NDVI算法为例,主要介绍了NDVI算法、NDVI的应用和性质、OpenCL介绍。  相似文献   
32.
恭城县岩溶石漠化环境变化定量遥感研究   总被引:2,自引:0,他引:2  
恭城县喀斯特地貌占全县土地面积60%以上,岩溶石漠化分布广泛,制约了该县经济发展。采用1991、2000和2006年时间序列的卫星遥感影像数据,对该县岩溶石漠化环境变化开展了植被指数NDVI、监督分类和重心轨迹等遥感定量分析。采用4种图像监督分类方法,提取了6种主要的生境信息。1991、2000和2006年NDVI分别为0.176417、0.06884和0.336478,岩溶石漠化面积分别为160.8、234.1和118.0km^2,均说明了恭城县的岩溶生态环境恢复正在朝好的方向发展。研究表明:运用最小距离分类在本试验区对识别6类生境分区比较可行;岩溶石漠化灾害在总体上具有向南东方向偏移的趋势,年均偏移速度约为49m。  相似文献   
33.
基于MODIS - NDVI 数据,辅以线性回归法与分段线性回归法,并借助ArcGIS 软件,对辽宁 省2000—2014 年植被覆盖的动态演变过程进行分析。结果表明: ( 1) 时间上,辽宁省植被NDVI 在年 际尺度上呈现出明显的增大趋势,2005 年出现突变,多年平均NDVI 值为0. 496; 春季、夏季、秋季 以及植被生长季NDVI 突变年份分别为2006 年、2005 年、2009 年和2004 年,秋季波动变化的突变点 明显滞后; 植被生长最旺盛的季节为夏季,且集中于8 月。( 2) 空间上,辽宁省植被覆盖具有明显的 地域性差异,呈现出东部高、中西部低的分布特征; 辽宁省植被覆盖优良区与辽东山地的界限基本吻 合,植被覆盖贫乏区主要集中在朝阳市和阜新市的东北部地区。( 3) 辽宁省植被覆盖程度呈山地阴坡 高于阳坡的形态,并且植被覆盖程度最好的坡向为北偏西方向。( 4) 2000—2014 年辽宁省植被覆盖度 整体以维持现状和轻微改善为主,保持不变的区域集中于中东部地区,辽阳市与沈阳市一带有轻微退 化现象,辽西北地区改善情况较为明显。  相似文献   
34.
Air temperature can be estimated from remote sensing by combining information in thermal infrared and optical wavelengths. The empirical TVX algorithm is based on an estimated linear relationship between observed Land Surface Temperature (LST) and a Spectral Vegetation Index (NDVI). Air temperature is assumed to be equal to the LST corresponding to the effective full vegetation cover, and is found by extrapolating the line to a maximum value of NDVImax. The algorithm has been tested and reported in the literature previously. However, the effect of vegetation types and climates and the potential variation in NDVI of the effective full cover has not been subject for investigation. The present study proposes a novel methodology to estimate NDVImax that uses observed air temperature to calibrate the NDVImax for each vegetation type. To assess the validity of this methodology, we have compared the accuracy of estimates using the new NDVImax and the previous NDVImax that have been proposed in literature with MSG-SEVIRI images in Spain during the year 2005. In addition, a spatio-temporal assessment of residuals has been performed to evaluate the accuracy of retrievals in terms of daily and seasonal variation, land cover, landscape heterogeneity and topography. Results showed that the new calibrated NDVImax perform well, with a Mean Absolute Error ranging between 2.8 °C and 4 °C. In addition, vegetation-specific NDVImax improve the accuracy compared with a unique NDVImax.  相似文献   
35.
Remotely sensed vegetation indices are widely used to detect greening and browning trends; especially the global coverage of time-series normalized difference vegetation index (NDVI) data which are available from 1981. Seasonality and serial auto-correlation in the data have previously been dealt with by integrating the data to annual values; as an alternative to reducing the temporal resolution, we apply harmonic analyses and non-parametric trend tests to the GIMMS NDVI dataset (1981-2006). Using the complete dataset, greening and browning trends were analyzed using a linear model corrected for seasonality by subtracting the seasonal component, and a seasonal non-parametric model. In a third approach, phenological shift and variation in length of growing season were accounted for by analyzing the time-series using vegetation development stages rather than calendar days. Results differed substantially between the models, even though the input data were the same. Prominent regional greening trends identified by several other studies were confirmed but the models were inconsistent in areas with weak trends. The linear model using data corrected for seasonality showed similar trend slopes to those described in previous work using linear models on yearly mean values. The non-parametric models demonstrated the significant influence of variations in phenology; accounting for these variations should yield more robust trend analyses and better understanding of vegetation trends.  相似文献   
36.
Satellite remote sensing has the potential to contribute to plant phenology monitoring at spatial and temporal scales relevant for regional and global scale studies. Historically, temporal composites of satellite data, ranging from 8 days to 16 days, have been used as a starting point for satellite-derived phenology data sets. In this study we assess how the temporal resolution of such composites affects the estimation of the start of season (SOS) by: 1) calibrating a relationship between satellite derived SOS with in situ leaf unfolding (LU) of trembling aspen (Populus tremuloides) across Canada and 2) quantifying the sensitivity of calibrated satellite SOS estimates and trends, over Canadian broadleaf forests, to the temporal resolution of NDVI data. SOS estimates and trends derived from daily NDVI data were compared to SOS estimates and trends derived from multiday NDVI composites that retain the exact date of the maximum NDVI value or that assume the midpoint of the multiday interval as the observation date. In situ observations of LU dates were acquired from the PlantWatch Canada network. A new Canadian database of cloud and snow screened daily 1-km resolution National Oceanic and Atmospheric Administration advanced very high resolution radiometer surface reflectance images was used as input satellite data. The mean absolute errors of SOS dates with respect to in situ LU dates ranged between 13 and 40 days. SOS estimates from NDVI composites that retain the exact date of the maximum NDVI value had smaller errors (~ 13 to 20 days). The sensitivity analysis reinforced these findings: SOS estimates from NDVI composites that use the exact date had smaller absolute deviations from the LU date (0 to − 5 days) than the SOS estimates from NDVI composites that use the midpoint (− 2 to − 27 days). The SOS trends between 1985 and 2007 were not sensitive to the temporal resolution or compositing methods. However, SOS trends at individual ecozones showed significant differences with the SOS trends from daily NDVI data (Taiga plains and the Pacific maritime zones). Overall, our results suggest that satellite based estimates of vegetation green-up dates should preferably use sub-sampled NDVI composites that include the exact observation date of the maximum NDVI to minimize errors in both, SOS estimates and SOS trend analyses. For trend analyses alone, any of the compositing methods could be used, preferably with composite intervals of less than 28 days. This is an important finding, as it suggests that existing long-term 10-day or 15-day NDVI composites could be used for SOS trend analyses over broadleaf forests in Canada or similar areas. Future studies will take advantage of the growing in situ phenology networks to improve the validation of satellite derived green-up dates.  相似文献   
37.
We used land surface temperature (LST) algorithms and NDVI values to estimate changes in vegetation in the European continent between 1982 and 1999 from the Pathfinder AVHRR Land (PAL) dataset. These two parameters are monitored through HANTS (Harmonic ANalysis of Time Series) software, which allows the simultaneous observation of mean value, first harmonic amplitude and phase behaviors in the same image. These results for each complete year of data show the effect of volcanic aerosols and orbital drift on PAL data. Comparison of time series of HANTS cloud-free time series with the original time series for various land cover proves that this software is useful for LST analysis, although primarily designed for NDVI applications. Comparison of yearly averages of HANTS LST over the whole Europe with air temperature confirms the validity of the results. Maps of the evolution for both parameters between periods 1982/1986 and 1995/1999 have been elaborated: NDVI data show the well confirmed trend of increase over Europe (up to 0.1 in NDVI), Southern Europe seeing a decrease in NDVI (− 0.02). LST averages stay stable or slightly decrease (up to − 1.5 K) over the whole continent, except for southern areas for which the increase is up to 2.5 K. These results evidence that arid and semi-arid areas of Southern Europe have become more arid, the rest of Europe seeing an increase in its wood land proportion, while seasonal amplitude in Northern Europe has decreased.  相似文献   
38.
Structural and functional analyses of ecosystems benefit when high accuracy vegetation coverages can be derived over large areas. In this study, we utilize IKONOS, Landsat 7 ETM+, and airborne scanning light detection and ranging (lidar) to quantify coniferous forest and understory grass coverages in a ponderosa pine (Pinus ponderosa) dominated ecosystem in the Black Hills of South Dakota. Linear spectral mixture analyses of IKONOS and ETM+ data were used to isolate spectral endmembers (bare soil, understory grass, and tree/shade) and calculate their subpixel fractional coverages. We then compared these endmember cover estimates to similar cover estimates derived from lidar data and field measures. The IKONOS-derived tree/shade fraction was significantly correlated with the field-measured canopy effective leaf area index (LAIe) (r2=0.55, p<0.001) and with the lidar-derived estimate of tree occurrence (r2=0.79, p<0.001). The enhanced vegetation index (EVI) calculated from IKONOS imagery showed a negative correlation with the field measured tree canopy effective LAI and lidar tree cover response (r2=0.30, r=−0.55 and r2=0.41, r=−0.64, respectively; p<0.001) and further analyses indicate a strong linear relationship between EVI and the IKONOS-derived grass fraction (r2=0.99, p<0.001). We also found that using EVI resulted in better agreement with the subpixel vegetation fractions in this ecosystem than using normalized difference of vegetation index (NDVI). Coarsening the IKONOS data to 30 m resolution imagery revealed a stronger relationship with lidar tree measures (r2=0.77, p<0.001) than at 4 m resolution (r2=0.58, p<0.001). Unmixed tree/shade fractions derived from 30 m resolution ETM+ imagery also showed a significant correlation with the lidar data (r2=0.66, p<0.001). These results demonstrate the power of using high resolution lidar data to validate spectral unmixing results of satellite imagery, and indicate that IKONOS data and Landsat 7 ETM+ data both can serve to make the important distinction between tree/shade coverage and exposed understory grass coverage during peak summertime greenness in a ponderosa pine forest ecosystem.  相似文献   
39.
40.
2001~2010年松木希错流域植被动态变化遥感研究   总被引:1,自引:1,他引:0  
遥感在区域植被变化研究中具有十分重要的作用,能为大面积监测植被状况的演化过程提供技术支持。NDVI在高植被覆盖地区存在过饱和现象,对稀疏地区的植被变化尤其敏感。以古里雅冰帽南部的松木希错流域植被相对稀疏区域为研究区,基于MODIS NDVI数据和逐月气象观测数据,以及RS和GIS平台,对该区域2001~2010年主要植被变化趋势进行了初步研究,并对植被变化与气候驱动因子的关系进行了分析和探讨。结果表明:① 2001~2010年间该区域的植被活动有加强趋势;② NDVI表明研究区植被生长季较短(5~9月),NDVI浮动区间为0.11~0.13,低于全国水平(0.3~0.35),也低于全球稀疏灌丛的平均水平(0.2~0.4);③NDVI与年均气温整体上呈正相关,而与年降水量相关性不强。表明近年来持续升温是影响该区域植被活动加强的最主要原因。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号