首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   381篇
  免费   145篇
  国内免费   3篇
电工技术   2篇
综合类   5篇
化学工业   394篇
金属工艺   1篇
机械仪表   1篇
建筑科学   9篇
能源动力   2篇
轻工业   5篇
石油天然气   1篇
无线电   42篇
一般工业技术   58篇
冶金工业   2篇
原子能技术   6篇
自动化技术   1篇
  2023年   6篇
  2022年   8篇
  2021年   37篇
  2020年   30篇
  2019年   20篇
  2018年   27篇
  2017年   28篇
  2016年   27篇
  2015年   24篇
  2014年   40篇
  2013年   50篇
  2012年   21篇
  2011年   22篇
  2010年   19篇
  2009年   33篇
  2008年   20篇
  2007年   21篇
  2006年   17篇
  2005年   15篇
  2004年   15篇
  2003年   8篇
  2002年   7篇
  2001年   6篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   5篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
  1951年   1篇
排序方式: 共有529条查询结果,搜索用时 31 毫秒
41.
Zinc oxide (ZnO) nanostructures have received widespread attention due to their unique structure and broad application possibilities, but high preparation costs and agglomeration limit their usage. In this article, low-cost and environmentally friendly cellulose and ZnCl2 are used to synthesize ZnO nanoparticles (ZnO NPs). Subsequently, multifunctional ZnO/polyacrylonitrile hybrid nanofiber mats (ZnO/PAN@NFMs) with mechanical stability suitable for large-scale application are prepared via solution blow-spinning. The synthesized ZnO/PAN@NFMs exhibit higher photodegradation of organic dyes than earlier reported semiconductors and good recycling performance with an organic dye degradation above 94%–98% after five cycles, which is ascribed to fixation of the ZnO NPs in the nanofibers. In addition, the inhibition rate for Escherichia coli and Staphylococcus aureus is above 99.9% and the bacteriostatic rate against E. coli remains as high as 99% after 10 cycles. From these properties, the synthesized composite ZnO/PAN@NFMs are promising for wastewater cleaning and antibacterial fabrics.  相似文献   
42.
The use of polymeric films incorporated with zeolite-TiO2 composites associated with UV radiation can be an alternative in the removal of volatile organic compounds (VOCs) through the adsorption and photodegradation processes. This study produced poly(lactic acid) (PLA) films incorporated with 13× zeolite, TiO2, and 13×-TiO2 zeolite composite to remove n-butanol and evaluate the by-products generated in the process. The results showed that 13× zeolite and TiO2 added individually or as a composite to PLA, gave the polymer matrix a significant increase in the removal capacity of n-butanol. The best performance was presented by the zeolite-TiO2, composite, confirming a synergistic effect. However, the formation of CO and CO2 exceeded the expected values, with the verification that the polymeric matrix underwent photodegradation action by TiO2. The polymeric film only containing zeolite is the most suitable for the removal of VOCs, as it did not present degradation of the PLA, generating a lower concentration of by-products.  相似文献   
43.
Natural polysaccharides (NPS) are regarded as biomolecular and structural components for preparing high-performance tough hydrogels. But the one-step fabrication of NPS-containing hydrogels in seconds and the template-free design of complicated high-resolution structures are still significant challenges in this field. To meet these requirements, various NPS-containing tough hydrogels are fabricated and processed into 2D/3D structures via the combination of Ru(bpy)32+-mediated photochemistry and extrusion 3D printing technique. The whole fabrication process is one-step, completed in tens of seconds under visible light irradiation. It is found that the used NPS plays a key role in achieving the fabrication of high-performance structured tough hydrogels. The high reactivity of functional groups in the used NPS can shorten their gelation times. Long rigid chains of the used NPS, their hierarchical assemblies, and contrasting multinetworks benefit from the efficient dissipation of mechanical energy and enhancement of its operational stability. Strong supramolecular interactions enable hydrogel precursors to have high viscosities, therefore providing good controllability to design high-resolution and complicated tough hydrogel structures via extrusion 3D printing. It is anticipated that this straightforward fabrication strategy and findings will open new horizons for NPS-containing materials.  相似文献   
44.
45.
UV‐cured polysiloxane epoxy coatings containing titanium dioxide were prepared by means of a cationic photopolymerization process. A good distribution of the inorganic filler was achieved within the polymeric network with an average size dimension of around 500 nm. UV‐vis analysis performed on organic dye (methylene blue) stained coatings showed a high efficiency of the titania photocatalytic activity: a complete degradation of the dye on the coating surface is reached after 60 min of UV irradiation without affecting the matrix photo‐degradation.

  相似文献   

46.
A new chemically oriented mathematical model for the development step of the LIGA process is presented (LIGA is an acronym for the German words Lithographie, Galvanoformung, and Abformung). The key assumption is that the developer can react with the polymeric resist material to increase the solubility of the latter, thereby partially overcoming the need to reduce the polymer size. The ease with which this reaction takes place is assumed to be determined by the number of side‐chain scissions that occur during the X‐ray exposure phase of the process. The dynamics of the dissolution process are simulated by the solution of the reaction diffusion equations for this three‐component, two‐phase system, the three species being the unreacted and reacted polymers and the solvent. The mass fluxes are described by multicomponent diffusion (Stefan–Maxwell) equations, and the chemical potentials are assumed to be given by the Flory–Huggins theory. Sample calculations are used to determine the dependence of the dissolution rate on key system parameters such as the reaction rate constant, polymer size, solid‐phase diffusivity, and Flory–Huggins interaction parameters. A simple photochemistry model is used to relate the reaction rate constant and the polymer size to the absorbed X‐ray dose. The resulting formula for the dissolution rate as a function of the dose and temperature is fit to an extensive experimental database to evaluate a set of unknown global parameters. The results suggest that reaction‐assisted dissolution is very important at low doses and low temperatures, the solubility of the unreacted polymer being too small for it to be dissolved at an appreciable rate. However, at high doses or at higher temperatures, the solubility is such that the reaction is no longer needed, and dissolution can take place via the conventional route. These results provide an explanation for the observed dependences of both the rate of dissolution and its activation energy on the absorbed dose. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 25–37, 2005  相似文献   
47.
48.
Phytochromes are bilin‐containing photoreceptors that are typically sensitive to the red/far‐red region of the visible spectrum. Recently, phytochromes from certain eukaryotic algae have become attractive targets for optogenetic applications because of their unique ability to respond to multiple wavelengths of light. Herein, a combination of time‐resolved spectroscopy and structural approaches across picosecond to second timescales have been used to map photochemical mechanisms and structural changes in this atypical group of phytochromes. The photochemistry of an orange/far‐red light‐sensitive algal phytochrome from Dolihomastix tenuilepis has been investigated by using a combination of visible, IR and X‐ray scattering probes. The entire photocycle, correlated with accompanying structural changes in the cofactor/protein, are reported. This study identifies a complex photocycle for this atypical phytochrome. It also highlights a need to combine outcomes from a range of biophysical approaches to unravel complex photochemical and macromolecular processes in multi‐domain photoreceptor proteins that are the basis of biological light‐mediated signalling.  相似文献   
49.
In this study, we investigated the effects of physical aging on the surface and gas‐transport properties of highly gas permeable poly(1‐trimethylsilyl‐1‐propyne) membranes irradiated with vacuum ultraviolet (VUV) radiation. VUV excimer lamp irradiation was performed on one side of the membrane for 6 or 60 min. The gas permeabilities for carbon dioxide (CO2) and nitrogen (N2) were determined through a volumetric measurement method at 23 °C. The gas permeabilities for CO2 and N2 increased temporarily at 7 days after 6 and 60 min of VUV irradiation of the membranes. The change in the gas permeability for N2 was more remarkable than that for CO2. These changes were related to the C?O or SiOx ratio. The C?O ratio was related to the gas permeability of the membranes VUV‐irradiated for 6 min, whereas the SiOx ratio was related to the gas permeability of the membranes VUV‐irradiated for 60 min. These changes affected the gas selectivities of the membranes. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45973.  相似文献   
50.
Bis‐GMA {2,2‐bis[4‐(2′‐hydroxy‐3′‐methacryloyloxy‐propoxy)‐phenyl]‐propane}, TEGDMA <2‐{2‐[2‐(2‐methylprop‐2‐enoyloxy)ethoxy]ethoxy}ethyl‐2‐methylprop‐2‐enoate>, and methyl methacrylate (MMA) are some of the most commonly used monomers in the field of restorative dentistry. These compounds are characterized by having one or two terminal double bonds. Besides the effort to synthesize new monomers, several problems still affect the clinical behavior of contemporary dental materials. In this work, two monomers with three terminal double bonds, 5A13DA and 5A13DMA, were synthesized. Both monomers were used to completely replace TEGDMA as reactive diluent of photopolymerizable dental resin composites containing Bis‐GMA. The effects of 5A13DA and 5A13DMA on flexural properties, double bond conversion, water sorption, solubility, and polymerization shrinkage were evaluated. In addition, both monomers were evaluated as crosslinking agents for methylmethacrylate, resulting in copolymers with enhanced thermal stability. The results obtained suggest that newly synthesized monomers are potential substitutes for TEGDMA in the formulation of dental composites, providing 50% lower volumetric shrinkage than the composite resin used as control and adequate mechanical properties. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46240.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号