首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   191篇
  免费   7篇
  国内免费   3篇
电工技术   1篇
化学工业   20篇
矿业工程   2篇
能源动力   143篇
无线电   7篇
一般工业技术   25篇
原子能技术   1篇
自动化技术   2篇
  2023年   33篇
  2022年   40篇
  2021年   36篇
  2020年   29篇
  2019年   26篇
  2018年   15篇
  2017年   6篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  1995年   1篇
排序方式: 共有201条查询结果,搜索用时 31 毫秒
71.
采用水热法在阴极集流体泡沫镍上负载Co3O4@rGO电催化剂,利用扫描电子显微镜(SEM)、X射线衍射(XRD)和能量散射光谱(EDS)进行表征。结果表明,在负载还原石墨烯(rGO)的泡沫镍集流体上主要生长了较均匀的Co3O4纳米线阵列和少量Co3O4纳米花和Co3O4纳米片,该Co3O4@rGO纳米复合材料表现出优异的氧还原和氧析出反应(ORR/OER)双功能催化活性。在室温空气环境下,电池连续稳定循环运行232 h,总计600次循环,大多数循环的库仑效率在82%~85%之间,放电电压平台在1.65 V左右,具有良好的放电倍率性能。  相似文献   
72.
The electrocatalytic activity of Ru0.8Co0.2O2−x nanocrystals was studied using diffraction, microscopic and spectroscopic techniques to elucidate the role of particle shape and surface chemical composition in the electrocatalytic evolution of oxygen and chlorine. The prepared Ru0.8Co0.2O2−x samples are of the rutile structure, their chemical composition, however, differs. The samples with the smallest particle size compensate for the Co doping by oxygen deficiency. The materials featuring bigger particle size show tendency to compensate for the presence of cobalt by higher valency of Ru. Regardless of the particle size or actual surface composition of the Ru0.8Co0.2O2−x electrodes, the chlorine evolution precedes that of oxygen by ca. 100 mV. The Ru0.8Co0.2O2−x electrodes retain high affinity to oxygen evolution once the reaction becomes possible. This behavior can be ascribed to a stabilization of the six-valent ruthenium, which represents the major intermediate for the oxygen evolution process, at the electrode surface due to the presence of di-valent and tri-valent cobalt. This effect precludes the possible effects of the particle shape and crystal edge distribution.  相似文献   
73.
The development of cheap, high-efficiency, and stable oxygen evolution reaction (OER) electrocatalysts is a current research hotspot. In this work, reduced graphene oxide (rGO) composite Ni3S2 microspheres grown directly on nickel foam (Ni3S2-rGO/NF) were prepared by tube furnace calcination and hydrothermal method. The Ni3S2-rGO/NF had excellent OER catalytic activity and stability with an overpotential of 303 mV at the current density of 100 mA cm−2, which was 100 mV lower than that of Ni3S2/NF, and its Tafel slope was as low as 23 mV·dec−1. The main reason for enhancing OER activity of the Ni3S2-rGO/NF is due to synergistic effect of Ni3S2 microspheres and rGO, which inhibited the production of NiS and refined the micron size of Ni3S2. This work offers a new method for developing stable and efficient OER catalysts.  相似文献   
74.
以先水热后硫化的方法制备出基于石墨毡基底的镍钴基化合物(NiCo2O4/GF和NiCo2 S4/GF)电极,探究不同水热温度对电极的催化特性的影响.通过扫描电子显微镜(SEM)、能量色散X射线光谱仪(EDS)、X射线衍射仪(XRD)和X射线光电子能谱仪(XPS)对样品表面形貌、结构、晶向及元素分布进行分析.通过循环伏安...  相似文献   
75.
Herein, we report an inexpensive synthesis of sonochemical nickel and iron (M = Ni, Fe) doped Cu2ZnSnS4 (CZTS) and their utility as a nanoelectrodes for improved electrocatalytic water splitting performance. The as-synthesized electrode materials were characterized further by Transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman and X-ray photoelectron (XP) spectroscopic studies. Significantly, Ni doped CZTS electrocatalyst exhibits low overpotential approximately 214 and 400 mV for the hydrogen evolution reactions (HER) in 0.5 M H2SO4 and 1 M KOH electrolyte solutions respectively, and 1.29 V vs RHE for the oxygen evolution reactions (OER) in 1 M KOH at 10 mA/cm2 current density. Small Tafel slopes and tested durability for longer time i.e. upto 500 min for water splitting, demonstrates that Ni doped CZTS is efficient bifunctional electrocatalyst having high activity along with extraordinary current/potential stability. Moreover, Fe doped CZTS electrocatalyst shows relatively poor response, i.e. overpotential 300 mV in 0.5 M H2SO4 and 445 mV in 1.0 M KOH towards HER and overpotential 1.54 V for the OER in 1 M KOH reaches at 10 mA/cm2. This highly efficient bifunctional electrocatalysts that can meet the existing energy anxiety.  相似文献   
76.
To make full use of the advantages of solid oxide cells (SOCs) under actual operating conditions, hetero-structured La0.6Sr0.4CoO3-δ/LaSrCoO4±δ (LSC113/214) thin film electrodes are prepared and investigated by a novel high temperature micro-probe electrochemical test platform for SOCs. The results show that the surface exchange coefficient (kq) of LSC113/214 thin films is 3–10 times higher than that of single phase LSC113 in 773–1123 K. ToF-SIMS and XPS characterizations show that LSC113/214 hetero-interface leads to Sr enrichment at interfacial region and stabilizes it against detrimental Sr segregation. This hetero-interface further induces increased number of active oxygen vacancies and leads to accelerated oxygen exchange kinetics by raising O 2p center closer to Fermi level. This work provides significantly enhanced ORR/OER activity of hetero-structured LSC113/214 oxygen electrode at operation conditions and brings substantial technical benefits for the SOC systems.  相似文献   
77.
RuO2 nanoparticles are synthesized by Instant method using Li2CO3 as stabilizing agent, under microwave irradiation at 60 °C and investigated for the anodic oxygen evolution reaction (OER) and for their supercapacitance properties in 0.5 M H2SO4 medium. Structural and morphological characterizations of RuO2 are investigated by in situ X-ray diffraction (XRD), thermogravimetric analysis (TG-DTA), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDS) and Raman spectroscopy. The TEM images of as prepared material show the uniform distribution of RuO2 nanoparticles with mean diameter of ca. 1.5 nm. Analysis on as prepared material indicates the structural formula as [RuO2·2.6H2O] 0.7H2O with low crystallinity. The influence of annealing temperature on RuO2 is studied in light of electrocatalytic activity for oxygen evolution reaction (OER) and capacitance. Electrochemical performances of RuO2 electrodes are followed by current-potential curves, galvanostatic charge-discharge cycles and evolved oxygen measurements. The amount of oxygen gas evolved during the OER by the crystalline RuO2 is found to be consistent with the electrical energy supplied to the catalyst. The cyclic voltammogram of RuO2 exhibits the typical capacitance behavior with highly reversible nature. The specific capacitance of hydrous RuO2 is found to be 737 F g−1 at the scan rate of 2 mV s−1, by the balanced transport of proton through the structural water and electron transport along dioxo bridges, which makes a suitable material for energy storage. The specific capacitance decreases with increase in the crystallinity of RuO2. The present study shows the potential method to synthesize rapid and uniform nano particles of RuO2 for water electrolysis and supercapacitors.  相似文献   
78.
We developed a series of Fe doping in Co-based perovskites SrTi0.1CoxFe0.9-xO3-δ (x = 0.5, 0.6, 0.7, 0.9) to investigate their OER activity and stability in alkaline media. Among all the samples, SrTi0·1Co0·5Fe0·4O3-δ (donated as STCF-154) shows wonderful OER activity with an overpotential of 0.37 V, a current density of 33.65 mA cm−2 at 1.71 V, and a Tafel slope of 94.82 mV dec−1. Besides, the potential of STCF-154 remained nearly unchanged for at least 8 h at a fixed current density of 10 mA cm−2disk on GC electrode. The improved activity and stability are likely originating from the highly oxidative oxygen species O22−/O formed in STCf-154, which can easily migrate from bulk STCF-154 and “spillover” to the surface of the catalyst during OER process. The Fe doping in Co-based perovskites had synergetically enhanced activity and can be considered as a good candidate for the OER in alkaline solution.  相似文献   
79.
The development of cost-effective and highly efficient electrocatalysts for oxygen evolution reaction (OER) is a grave challenge in water splitting catalysis for the clean and viable production of molecular hydrogen (H2). Herein, we report the fabrication of higher-dimensional thin film CuO nanostructures with controlled morphologies i.e., nanosheets, nanocubes, nanoflowers, and nanoleaves and their relative performance for water oxidation catalysis. Among these nanostructures, CuO nanoflowers exhibit high catalytic activity with an onset potential of 1.48 V and a Tafel slope of 84 mVdec−1 in 1 M KOH solution. Moreover, an overpotential of 270 mV and 400 mV is needed to attain a current density of 10 mAcm−2 and 100 mAcm−2 respectively with high Faradaic efficiency. More promisingly, the catalytic performance was found highly dependent upon the nanoscale features and subsequently the improved electrochemically active surface area (ECSA). Such morphology dependent OER performance and binder-free nature of catalyst may provide the high-speed track for electrons transport owing to the inherent catalyst-substrate electronic interconnection and thus making it more promising and high-performance electrocatalyst for OER.  相似文献   
80.
Development of efficient and robust cathode catalysts is critical for the commercialization of Li-O2 batteries (LOBs). Herein, a well-designed CePO4@N-P-CNSs cathode catalyst for LOBs via coupling P-N site-rich N, P co-doped graphene-like carbon nanosheets (N-P-CNSs) with nano-CePO4 via a novel “in situ derivation” coupling strategy by in situ transforming the P atoms of P-C sites in N-P-CNSs to CePO4 is reported. The CePO4@N-P-CNSs exhibit superior bifunctional ORR/OER activity relative to commercial Pt/C-RuO2 with an overall overpotential of 0.64 V (vs RHE). Moreover, the LOB with CePO4@N-P-CNSs as the cathode catalyst delivers a low charge overpotential of 0.67 V (vs Li/Li+), high discharge capacity of 29774 mAh g−1 at 100 mA g−1 and long cycling stability of 415 cycles, respectively. The remarkably enhanced LOB performance is attributable to the in situ derived CePO4 nanoparticles and the P-N sites in N-P-CNSs, which facilitate increased bifunctional ORR/OER activity, promote the rapid and effective decomposition of Li2O2 and inhibit the formation of Li2CO3. This work may provide new inspiration for designing efficient, durable, and cost-effective cathode catalysts for LOBs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号