首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8055篇
  免费   243篇
  国内免费   194篇
电工技术   65篇
综合类   322篇
化学工业   2572篇
金属工艺   2323篇
机械仪表   786篇
建筑科学   144篇
矿业工程   104篇
能源动力   170篇
轻工业   294篇
水利工程   17篇
石油天然气   18篇
武器工业   16篇
无线电   183篇
一般工业技术   668篇
冶金工业   658篇
原子能技术   37篇
自动化技术   115篇
  2024年   6篇
  2023年   150篇
  2022年   300篇
  2021年   314篇
  2020年   283篇
  2019年   199篇
  2018年   182篇
  2017年   247篇
  2016年   192篇
  2015年   168篇
  2014年   437篇
  2013年   431篇
  2012年   511篇
  2011年   606篇
  2010年   479篇
  2009年   469篇
  2008年   401篇
  2007年   473篇
  2006年   476篇
  2005年   367篇
  2004年   251篇
  2003年   244篇
  2002年   223篇
  2001年   198篇
  2000年   170篇
  1999年   149篇
  1998年   129篇
  1997年   121篇
  1996年   71篇
  1995年   82篇
  1994年   52篇
  1993年   18篇
  1992年   26篇
  1991年   20篇
  1990年   16篇
  1989年   12篇
  1988年   13篇
  1987年   4篇
  1985年   1篇
  1983年   1篇
排序方式: 共有8492条查询结果,搜索用时 15 毫秒
1.
Bioactive ceramic scaffolds for bone regeneration consisting of a three-dimensional mesh of interpenetrating struts with square section were fabricated via Digital Light Processing (DLP). The ability of the technique to manufacture 3D porous structures from β-tricalcium phosphate (β-TCP) powders with different dimensions of struts and pores was evaluated, identifying the possibilities and limitations of the manufacturing process. Small pore sizes were found to seriously complicate the elimination of excess slurry from the scaffold’s innermost pores. The effect of the strut/pore size on the mechanical performance of the scaffolds under compressive stresses was also evaluated, but no significant influence was found. Under compressive stresses, the structures resulted weaker when tested perpendicularly to the printing plane due to interlayer shear failure. Interlayer superficial grooves are proposed as potential failure-controlling defects, which could also explain the lack of a Weibull size effect on the mechanical strength of the fabricated DLP scaffolds.  相似文献   
2.
Self-lubricating ceramic cutting tools have recently gained considerable attention as the tool wear in cutting hard-to-cut materials greatly affects the production cost, integrity of the machined surface, and productivity. In an attempt to compile the progress made in this important research area, a critical review has been performed covering a range of aspects. These include the current research trends and the need for self-lubricating ceramic tools, identification of prospective high-temperature solid lubricants and their limitations followed by a presentation of recent experimental and numerical work conducted related to self-lubricant ceramic cutting tools. Various lubrication mechanisms involved in the cutting process are also examined to identify general tribological response under various tribo-systems, which is expected to provide useful directions for the researchers and cutting industry. The current and emerging synthesis techniques are discussed in detail and compared with respect to ceramic cutting tools. Finally, some research gaps and future directions are suggested that could lead to optimum design and development of innovative self-lubricating ceramic tools.  相似文献   
3.
Brazing, as a common method of bonding ceramic and metal, has been applied in microelectronics, aerospace, machinery and other domains extensively. The residual thermal stress in the brazed joint has direct effects on the mechanical properties of the joint, so how to control the generation of residual thermal stress has become the vital point. In this paper, the methods of reducing residual thermal stress in the brazing process in recent years are reviewed. The generation and effects of residual thermal stress in the brazed joint are introduced. Besides, the methods of detecting residual thermal stress are discussed, and different methods of reducing residual thermal stress in brazed joints are also analyzed. Finally, the future development directions of reducing residual thermal stress in the brazed joint are proposed.  相似文献   
4.
In this study the effects of high temperature and moisture on the impact damage resistance and mechanical strength of Nextel 610/alumina silicate ceramic matrix composites were experimentally evaluated. Composite laminates were exposed to either a 1050°C isothermal furnace-based environment for 30 consecutive days at 6 h a day, or 95% relative humidity environment for 13 consecutive days at 67°C. Low velocity impact, tensile and short beam strength tests were performed on both ambient and environmentally conditioned laminates and damage was characterized using a combination of non-destructive and destructive techniques. High temperature and humidity environmental exposure adversely affected the impact resistance of the composite laminates. For all the environments, planar internal damage area was greater than the back side dent area, which in turn was greater than the impactor side dent area. Evidence of environmental embrittlement through a stiffer tensile response was noted for the high temperature exposed laminates while the short beam strength tests showed greater propensity for interlaminar shear failure in the moisture exposed laminates. Destructive evaluations exposed larger, more pronounced delaminations in the environmentally conditioned laminates in comparison to the ambient ones. External damage metrics of the impactor side dent depth and area directly influenced the post-impact tensile strength of the laminates while no such trend between internal damage area and residual strength could be ascertained.  相似文献   
5.
The state-of-the-art protonic ceramic conductor BaZr0.8Y0.2O3-δ (BZY20) requires an extremely high sintering temperature (≥1700 °C) to achieve the desired relative density and microstructure necessary to function as a proton conducting electrolyte. In this work, we developed a cold sintering pretreatment assisted moderate-temperature sintering method for the fabrication of high-quality pure BZY20 pellets. BZY20 pellets with high relative density of ~94% were fabricated with a final sintering temperature of 1500 °C (200 °C lower than the traditional sintering temperature). A comparison with BZY20 control samples indicated that the proper amount of BaCO3 introduced on the BZY20 particle surface and the high green density achieved by cold sintering pretreatment were the main drivers for lowering the sintering temperature. The electrical conductivity measurement by electrochemical impedance spectroscopy showed that the as-prepared BZY20 pellets have a proton conductivity comparable to the state-of-the-art values. The cold sintering pretreatment outlined in this work has the potential to lower the sintering temperatures for similar types of protonic ceramic materials under consideration for a wide range of energy conversion and storage applications.  相似文献   
6.
Stop flow lithography (SFL) combines aspects of microfluidic and photolithography to continuously fabricate particles with uniform planar shapes as dictated by a mask. In this work we aim to expand the palette of materials suitable for SFL processing by investigating the use of UV-crosslinkable preceramic polymers to make ceramic particles. A commercially available methacrylated-polysiloxane was used as the preceramic polymer and was mixed with 2.5 wt% Irgacure 651 photoinitiator. A simple SFL system was assembled to continuously fabricate UV-crosslinked preceramic polymer particles in the shape of hexagons, triangles, and gears with diameters ranging from 100 to 200 μm and thicknesses of 74 μm +/- 4 μm. Particles were harvested from the excess preceramic solution, cleaned and then pyrolyzed at 1000 °C to transform them into silicon oxycarbide ceramic particles. Particle shape was maintained during pyrolysis despite a ~80 % linear shrinkage due to the removal of acryl and methyl side groups, as confirmed via FTIR. After pyrolysis the outer diameters of the SiOC particles ranged from 20 to 40 μm with thicknesses of 10 μm–12 μm. Pyrolyzed particles were successfully recovered and dispersed in water. This work demonstrates a robust path for the fabrication of ceramic particles with specific shapes from preceramic polymers via SFL.  相似文献   
7.
A novel TiO2 thin film was prepared on the ceramic hollow fiber by the sol-gel method using poly(vinylpyrrolidone) (PVP) and polyvinyl alcohol (PVA) as additives. SEM images verified the formation of TiO2 layer with various thickness using different composition of titania sols. The effect of the PVP and PVA contents on the TiO2 sol properties, the separation and the antifouling performance of the ultrafiltration membranes were investigated thoroughly. When the contents of PVP and PVA were 1.0 wt% and 0.8 wt%, respectively, the resultant membrane showed a thickness of 0.55 μm with a pure water flux of 255 L m?2 h?1. In addition, the adherent foulant bovine serum albumin was applied to evaluate the antifouling performance. During the three fouling-recovery cycles, the flux recovery ratio and the flux decay ratio maintained about 99% and 30%. The BSA flux and rejection were still 169 L m?2 h?1 and 96.9% after the cycles, indicating a superior antifouling property.  相似文献   
8.
A novel method for fabricating a nano-Cu/Si3N4 ceramic substrate is proposed. The nano-Cu/Si3N4 ceramic substrate is first fabricated using spark plasma sintering (SPS) with the addition of nanoscale multilayer films (Ti/TiN/Ti/TiN/Ti) as transition layers. The microstructures of the nano-Cu metal layer and the interface between Cu and Si3N4 are investigated. The results show that a higher SPS temperature increases the grain size of the nano-Cu metal layer and affects the hardness. The microstructure of the transition layer evolves significantly after SPS. Ti in the transition layer can react with Si3N4 and with nano-Cu to form interfacial reaction layers of TiN and Ti–Cu, respectively; these ensure stronger bonding between nano-Cu and Si3N4. Higher SPS temperatures improve the diffusion ability of Ti and Cu, inducing the formation of Ti3Cu3O compounds in the nano-Cu metal layer and Ti2Cu in the transition layer. This study provides an important strategy for designing and constructing a new type of ceramic substrate.  相似文献   
9.
《Ceramics International》2022,48(20):30282-30293
Ceramic cores are an important component in the preparation of hollow turbine blades for aero-engines. Compared with traditional hot injection technology, 3D printing technology overcomes the disadvantages of a long production cycle and the difficulty in producing highly complex ceramic cores. The ceramic cores of hollow turbine blades require a high bending strength at high temperatures, and nano-mineralizers greatly improve their strength. In this study, nano-silica-reinforced alumina-based ceramic cores were prepared, and the effects of nanopowder content on the microstructure and properties of the ceramic cores were investigated. Alumina-based ceramic cores contained with nano-silica were prepared using the vat photopolymerization 3D printing technique and sintered at 1500 °C. The results showed that the linear shrinkage of ceramic cores first increased and then decreased as the nano-silica powder content increased, and the bending strength showed the same trend. The fracture mode changed from intergranular to transgranular. The open porosity and bulk density fluctuated slightly. The weight loss rate was approximately 20%. When the nano-silica content was 3%, the bending strength reached a maximum of 46.2 MPa and 26.1 MPa at 25 °C and 1500 °C, respectively. The precipitation of the glass phase, change in the fracture mode of the material, pinning crack of nanoparticles, and reduction of fracture energy due to the interlocking of cracks, were the main reasons for material strengthening. The successful preparation of 3D printed nano-silica reinforced alumina-based ceramic cores is expected to promote the preparation of high-performance ceramic cores with complex structures of hollow turbine blades.  相似文献   
10.
Ceramic lattice structures (CLSs) are used for construction in common and extreme environments because of the extraordinary properties of ceramics. In this study, we designed and additively manufactured CLSs with distinct structural parameters to explore their quasi-static and dynamic compressive behaviours in detail. It was demonstrated that both the relative density (?ρ) and inclination angle (ω) had a significant impact on the quasi-static and dynamic mechanical properties of the CLSs. Furthermore, the mathematical relationships between the quasi-static compressive properties, including quasi-static compressive strength (QS), quasi-static Young’s modulus (QY), and quasi-static energy absorption (QE), versus ?ρ and ω obeyed the Gibson–Ashby and Deshpande and Fleck models, respectively. It was revealed by experiment and simulation that as the stiffness increased, the quasi-static failure mode of the CLSs changed from a parallel-vertical-inclined mixed mode to a parallel-vertical mode. In addition, the relationship between the dynamic mechanical properties of the CLSs versus ?ρ and ω also followed the Gibson–Ashby and Deshpande and Fleck models. The exceptional dynamic increase factor indicated that CLSs are highly suitable for extreme environments. These findings will aid in the research and development of customised additively manufactured CLSs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号