首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35928篇
  免费   2532篇
  国内免费   1543篇
电工技术   2819篇
综合类   1748篇
化学工业   12378篇
金属工艺   4536篇
机械仪表   661篇
建筑科学   974篇
矿业工程   638篇
能源动力   4110篇
轻工业   3242篇
水利工程   223篇
石油天然气   2608篇
武器工业   107篇
无线电   648篇
一般工业技术   2725篇
冶金工业   1582篇
原子能技术   660篇
自动化技术   344篇
  2024年   61篇
  2023年   645篇
  2022年   839篇
  2021年   1085篇
  2020年   1100篇
  2019年   1030篇
  2018年   946篇
  2017年   1037篇
  2016年   983篇
  2015年   979篇
  2014年   1860篇
  2013年   2016篇
  2012年   2216篇
  2011年   2579篇
  2010年   1928篇
  2009年   2154篇
  2008年   1853篇
  2007年   2436篇
  2006年   2166篇
  2005年   1870篇
  2004年   1580篇
  2003年   1404篇
  2002年   1190篇
  2001年   1041篇
  2000年   928篇
  1999年   618篇
  1998年   521篇
  1997年   425篇
  1996年   429篇
  1995年   310篇
  1994年   292篇
  1993年   238篇
  1992年   216篇
  1991年   190篇
  1990年   169篇
  1989年   98篇
  1988年   73篇
  1987年   62篇
  1986年   54篇
  1985年   57篇
  1984年   51篇
  1983年   23篇
  1982年   47篇
  1981年   38篇
  1980年   38篇
  1979年   20篇
  1978年   26篇
  1977年   19篇
  1976年   17篇
  1975年   20篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
In this study, we report the three-point flexural strength and fracture toughness of monolithic hafnium carbide up to 2000 °C. HfC with different grain sizes was consolidated using the spark plasma sintering method. Coarse-grained monoliths showed a weak dependence on the strain rate during high-temperature tests at 1600 °C–2000 °C. In contrast, results for the ceramics with a grain size below 20 μm indicated a positive dependence of the yield strength vs strain rate. This allowed us to identify the activation energy for high-temperature deformation in flexure as 370 kJ/mol. This level of activation energy is in satisfactory agreement with reports about the diffusion of C in hafnium carbide.  相似文献   
2.
Electroreduction of small molecules such as H2O, CO2, and N2 for producing clean fuels or valuable chemicals provides a sustainable approach to meet the increasing global energy demands and to alleviate the concern on climate change resulting from fossil fuel consumption. On the path to implement this purpose, however, several scientific hurdles remain, one of which is the low energy efficiency due to the sluggish kinetics of the paired oxygen evolution reaction (OER). In response, it is highly desirable to synthesize high-performance and cost-effective OER electrocatalysts. Recent advances have witnessed surface reconstruction engineering as a salient tool to significantly improve the catalytic performance of OER electrocatalysts. In this review, recent progress on the reconstructed OER electrocatalysts and future opportunities are discussed. A brief introduction of the fundamentals of OER and the experimental approaches for generating and characterizing the reconstructed active sites in OER nanocatalysts are given first, followed by an expanded discussion of recent advances on the reconstructed OER electrocatalysts with improved activities, with a particular emphasis on understanding the correlation between surface dynamics and activities. Finally, a prospect for clean future energy communities harnessing surface reconstruction-promoted electrochemical water oxidation will be provided.  相似文献   
3.
Developing non-platinum group metal (non-PGM) electrocatalysts for the hydrogen oxidation reaction (HOR) represents the efforts towards the more economical use of hydrogen fuel cells and hydrogen energy, which has attracted tremendous attention recently. However, non-PGM electrocatalysts for the HOR are still in their early development stages as compared with the significant advances in those for the oxygen reduction reaction and hydrogen evolution reaction. Herein, this paper summarizes the recent progresses and highlights the key challenges for the rational design of non-PGM electrocatalysts, aiming to promote the development of non-PGM HOR electrocatalysts. Fundamental understandings of the HOR mechanism are firstly reviewed, where theoretical interpretations on the low HOR kinetics in alkaline media, including the hydrogen binding energy theory, the bifunctional mechanism, and the water molecule reorganization, are particularly discussed. Subsequently, progresses of typical non-PGM HOR electrocatalysts in acid and alkaline media are summarized separately. For the HOR under alkaline conditions, the superiorities and challenges of Ni-based catalysts are discussed with a particular focus as they are the most promising non-PGM electrocatalysts. Finally, this paper highlights the challenges and provide perspectives on the future development directions of non-PGM HOR electrocatalysts.  相似文献   
4.
《Ceramics International》2021,47(24):34845-34850
The interfacial delamination of electrode/ceramic multilayer structure will seriously damage the reliability of low temperature co-fired ceramic (LTCC) module in practical applications. In this work, three kinds of glasses employed in Au electrode are designed and prepared to study the abnormal expansion and delamination process in the Au/ceramic LTCC multilayer structure. The interfacial delamination in the co-fired structure is found to be attributed to the abnormal expansion of glass in respect to Au electrode at high temperature, which is originated from the enlarged closed pores during the co-firing process. This conclusion is further confirmed by co-firing the sample in a low-pressure condition. The mechanism and elimination of interfacial delamination here provides a feasible solution for the design of novel glasses in Au electrode for LTCC applications.  相似文献   
5.
Single-metal high-temperature solid sorbents for syngas cleaning using Mn, Ca, Fe, Cu, or Mo supported on γ-Al2O3 were synthesized, characterized, and tested in a fixed-bed reactor. H2S and SO2 concentrations in the gas after treatment at T = 400 to 700 °C were compared with thermodynamic calculations. The Mn-based sorbent showed the best ability to achieve a low sulfur residual in the gas, especially at temperatures above 600 °C. Sorbents with Fe, Cu, and Mo gave SO2 formation in the initial phase, but this could be avoided by a pre-reduction treatment of the sorbent material.  相似文献   
6.
Developing low cost, highly efficient, and long-term stability electrocatalysts are critical for direct oxidation methanol fuel cell. Despite huge efforts, designing low-cost electrocatalysts with high activity and long-term durability remains a significant technical challenge. Here, we prepared a new kind of platinum-nickel catalyst supported on silane-modified graphene oxide (NH2-rGO) by a two-step method at room temperature. Powder X-ray diffraction, UV–vis spectroscopy, Raman, FTIR spectroscopy and X-ray photoelectron spectroscopy results confirm that GO was successfully modified with 3-aminopropyltriethoxysilane (APTES), which helps to uniformly disperse PtNi nanoparticles. Cyclic voltammetry, chronoamperometry, CO-stripping and rotating disk electrode (RDE) results imply that PtNi/NH2-rGO catalyst has significantly higher catalytic activity, enhance the CO toxicity resistance, higher stability and much faster kinetics of methanol oxidation than commercial Pt/C under alkaline conditions.  相似文献   
7.
吕薇  姜根山  刘月超  张伟 《声学技术》2022,41(6):789-795
为了研究温度分布对于管阵列结构中的声透射特性的影响,以核电站的实际工况为背景,构建了不同的温度场以及周期性变化的非均匀温度场,利用有限元方法进行数值模拟。结果表明:(1)温度分布会改变管阵列声透射频谱的“禁带”宽度以及中心频率位置。在同一介质中,温度变化对频率较高位置的影响大于频率较低的位置。(2)在同样为10℃的温度差下,当水的平均声速为1 653 m·s-1、饱和水蒸气的平均声速为522.5 m·s-1时,介质为水时的禁带宽度及中心频率位置变化较大,即声速大的介质的频谱对于温度的变化更敏感。(3)当温度差在10℃以内,在周期性变化的非均匀温度场和与均匀温度场中管阵列声透射特性在第一中心频率23 996.1 Hz之前,两频谱差别很小,在第一禁带之后会出现明显区别。该研究成果对完善核电站应用的声学检测提供了理论基础。  相似文献   
8.
Electrolysis of water for producing hydrogen instead of traditional fossil fuels is one of the most promising methods to alleviate environmental pollution and energy crisis. In this work, Fe and F ion co-doped Ni3S2 nanoarrays grown on Ni foam substrate were prepared by typical hydrothermal and sulfuration processes for the first time. Density functional theory (DFT) calculation demonstrate that the adsorption energy of the material to water is greatly enhanced due to the doping of F and Fe, which is conducive to the formation of intermediate species and the improvement of electrochemical performance of the electrode. The adsorption energy of anions (F and S) and cations (Fe and Ni) to water in each material was also calculated, and the results showed that F ion showed the most optimal adsorption energy of water, which proved that the doping of F and Fe was beneficial to improve the electrochemical performance of the electrode. It is worth noting that the surface of Fe–F–Ni3S2 material will undergo reconstruction during the process of water oxidation reaction and urea oxidation reaction, and amorphous oxides or hydroxides in situ would be formed on the surface of electrode, which are the real active species.  相似文献   
9.
The synthesized novel metal oxides YxCeyRuzO4 (x = 1.5, y = 0.84, z = 0.04) which was produced by the sol-gel method was used as a support for Cu active metal on the surface of a microchannel plate reactor in the methanol steam reforming (MSR) process. The prepared catalysts were characterized by X-ray powder diffraction (XRD), BET surface area analysis (SBET), energy-dispersive X-ray analysis (EDX), field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), temperature-programmed desorption (NH3-TPD), and temperature-programmed reduction (H2-TPR). High methanol conversion (99.5%) and H2 selectivity (98.7%) and low CO selectivity (1.4%) were achieved for Cu/YxCeyRuzO4 coated microchannel reactor at 250 °C. FE-SEM images and TGA curve of the spent catalyst displayed no coke formation on the surface of the catalyst after 32 h on stream at 300 °C. The low reduction temperature of Cu, high BET surface area, and high pore volume of the catalyst are considered imperative factors that cause a better dispersion of copper on the Y1.5Ce0.84Ru0.04O4 support.  相似文献   
10.
Effects of different drying methods and different addition levels of eggplant (EP) on product quality of low-fat patties (LFPs) were investigated during storage. EP was dried in an oven dryer at 60 °C or a freeze dryer at −50 °C. LFPs were prepared by replacing with 1.5% soy protein isolate (SPI). Six treatments were used in this study: (1) control (CTL), without addition of EP; (2) reference (REF), 0.1% ascorbic acid; (3) O1, 0.25% oven-dried (OD) EP; (4) O2, 0.5% ODEP; (5) F1, 0.25% freeze-dried (FD) EP; and (6) F2, 0.5% FDEP. Redness (a*) and lightness (L*) values in LFPs added with EP were lower than those of others (p < 0.05) and decreased with increasing storage time. Yellowness (b*) values of cooked patties were increased during storage time (p < 0.05), with control having the highest value. The addition of EP or ascorbic acid into LFPs lowered microbial counts than control (p < 0.05). Thiobarbituric acid reactive substances (TBARS) was increased during storage, with REF having the lowest value, and patties added with EP had lower TBARS values than control during storage. Volatile basic nitrogen (VBN, mg%) contents of all patties also increased during storage time with O2 and F2 having lower values than control. Therefore, EP might have potential as a natural antioxidant in meat products during storage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号