首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2410篇
  免费   155篇
  国内免费   116篇
电工技术   48篇
综合类   124篇
化学工业   617篇
金属工艺   311篇
机械仪表   91篇
建筑科学   42篇
矿业工程   22篇
能源动力   220篇
轻工业   21篇
水利工程   9篇
石油天然气   25篇
武器工业   5篇
无线电   237篇
一般工业技术   565篇
冶金工业   42篇
原子能技术   144篇
自动化技术   158篇
  2024年   3篇
  2023年   144篇
  2022年   95篇
  2021年   112篇
  2020年   127篇
  2019年   112篇
  2018年   85篇
  2017年   114篇
  2016年   92篇
  2015年   153篇
  2014年   198篇
  2013年   273篇
  2012年   159篇
  2011年   171篇
  2010年   94篇
  2009年   116篇
  2008年   90篇
  2007年   84篇
  2006年   70篇
  2005年   53篇
  2004年   49篇
  2003年   35篇
  2002年   29篇
  2001年   19篇
  2000年   26篇
  1999年   22篇
  1998年   16篇
  1997年   9篇
  1996年   21篇
  1995年   13篇
  1994年   8篇
  1993年   10篇
  1992年   8篇
  1991年   15篇
  1990年   7篇
  1989年   4篇
  1988年   3篇
  1987年   3篇
  1986年   5篇
  1985年   8篇
  1984年   9篇
  1983年   4篇
  1982年   6篇
  1981年   1篇
  1979年   3篇
  1978年   2篇
  1977年   1篇
排序方式: 共有2681条查询结果,搜索用时 31 毫秒
1.
Heparanase (Hpse) is an endo-β-D-glucuronidase capable of cleaving heparan sulfate side chains. Its upregulated expression is implicated in tumor growth, metastasis and angiogenesis, thus making it an attractive target in cancer therapeutics. Currently, a few small molecule inhibitors have been reported to inhibit Hpse, with promising oral administration and pharmacokinetic (PK) properties. In the present study, a ligand-based pharmacophore model was generated from a dataset of well-known active small molecule Hpse inhibitors which were observed to display favorable PK properties. The compounds from the InterBioScreen database of natural (69,034) and synthetic (195,469) molecules were first filtered for their drug-likeness and the pharmacophore model was used to screen the drug-like database. The compounds acquired from screening were subjected to molecular docking with Heparanase, where two molecules used in pharmacophore generation were used as reference. From the docking analysis, 33 compounds displayed higher docking scores than the reference and favorable interactions with the catalytic residues. Complex interactions were further evaluated by molecular dynamics simulations to assess their stability over a period of 50 ns. Furthermore, the binding free energies of the 33 compounds revealed 2 natural and 2 synthetic compounds, with better binding affinities than reference molecules, and were, therefore, deemed as hits. The hit compounds presented from this in silico investigation could act as potent Heparanase inhibitors and further serve as lead scaffolds to develop compounds targeting Heparanase upregulation in cancer.  相似文献   
2.
Formic acid (HCOOH, FA), a common liquid hydrogen storage material, has attracted tremendous research interest. However, the development of efficient, low-cost and high-stable heterogeneous catalyst for selective dehydrogenation of FA remains a major challenge. In this paper, a simple co-reduction method is proposed to synthesize nitrogen-phosphorus co-functionalized rGO (NPG) supported ultrafine NiCoPd-CeOx nanoparticles (NPs) with a mean size of 1.2 nm. Remarkably, the as-prepared Ni0.2Co0.2Pd0.6-CeOx/NPG shows outstanding catalytic activity for FA dehydrogenation, affording a high TOF value of 6506.8 mol H2 mol Pd?1 h?1 at 303 K and a low activation energy of 17.7 kJ mol?1, which is better than most of the reported heterogeneous catalysts, and can be ascribed to the combined effect of well-dispersed ultrafine NiCoPd-CeOx NPs, modified Pd electronic structure, and abundant active sites. The reaction mechanism of dehydrogenation of FA is also discussed. Furthermore, the optimized Ni0.2Co0.2Pd0.6-CeOx/NPG shows excellent stability over 10th run with 100% conversion and 100% H2 selectivity, which may provide more possibilities for practical application of FA system on fuel cells.  相似文献   
3.
The outstanding physical properties make TM5Si4 silicides become the potential silicon-based transition-metal ultrahigh-temperature materials. In present work, we adopt the first-principles scheme to explore the structural stability, mechanical properties and explain the hydrogenated mechanism of Ti5Si4, Zr5Si4 and Hf5Si4 using the electronic structures. And the investigation increases the theoretical support for the developments and applications of TM5Si4 silicides. Three hydrogenated models have shown that the hydrogen displays the stability for hydrogenated TM5Si4 compounds. Furthermore, the introduction of hydrogen occupation has weakened the elastic properties of TM5Si4. The metallic property of TM5Si4 and three hydrogenated models was confirmed by the electronic structures. The localized hybridization between hydrogen and TM5Si4 confirm the hydrogenated structural stability.  相似文献   
4.
Electrocatalytic reduction of N2 to NH3 under ambient conditions, inspired by biological nitrogen fixation, is a new approach to address the current energy shortage crisis. As a result, developing efficient and low-cost catalysts is critical. The catalytic activity, catalytic mechanism, and selectivity of α-arsenene (α-Ars) catalysts anchored with various transition metal atoms and doped with different numbers of N atom were investigated for N2 reduction reaction (NRR) in this paper. Results reveal that compared with WN3-α-Ars which is coordinated with three N atoms, asym-WN2As-α-Ars that coordinated with two N atoms not only exhibits high catalytic activity (UL = ?0.36 V), but can also successfully suppress the hydrogen evolution reaction (HER). It is manifested that reducing the number of coordination atoms can promote the selectivity of the transition metal (TM) loaded N-doped arsenene catalysts. Furthermore, activity origin analyses show both the charge on 1N–NH and φ form volcano-type relationship with the limiting potential. The active center of the catalyst, which acts as the charge transporter and has the moderate ability to retrieve charges, is the most efficient in NRR. Overall, this research creates high performance NRR catalysts by varying the number of coordinating N atoms, which provides a novel idea for the development of new NRR catalysts.  相似文献   
5.
The vanadium hydrides have better hydrogen storage capacity in comparison to the other metal hydrides. Although the structure of VH2 hydride has been reported, the structural stability, electronic and optical properties of VH2 hydride are unclear. To solve these problems, we apply the first-principles method to study the structural stability, electronic and optical properties of VH2 hydrides. Similar to the metal dihydrides, four possible VH2 hydrides such as the cubic (Fm-3m), tetragonal (I4/mmm), tetragonal (P42/mnm) and orthorhombic (Pnma) are designed. The result shows that the cubic VH2 hydride is a thermodynamic and dynamical stability. In particular, the tetragonal (I4/mmm) and the orthorhombic (Pnma) VH2 hydrides are firstly predicted. It is found that these VH2 hydrides show metallic behavior. The electronic interaction of V (d-state)-H (s-state) is beneficial to improve the hydrogen storage in VH2 hydride. In addition, the formation of V–H bond can improve the structural stability of VH2 hydride. Based on the analysis of optical properties, it is found that all VH2 hydrides show the ultraviolet response. Compared to the tetragonal and orthorhombic VH2 hydrides, the cubic VH2 hydride has better storage optical properties. Therefore, we believe that the VH2 hydride is a promising hydrogen storage material.  相似文献   
6.
We report the study of conductive polyaniline (PANI) chain embedded Ti-MOF functionalized with CoS as a cocatalyst for hydrogen evolution reaction (HER) application. The post synthetically modified hybrid photocatalyst PANI/Ti-MOF/CoS greatly influences the redox and e? ? h+ separation process and exhibits an impressive rate of HER (~1322 μmol h?1g?1), suppressing the pristine Ti-MOF (~62 μmol h?1g?1) with apparent quantum yield (AQY) of ~3.2 and transient current response of ~46.4 μA cm?2. In this system, Ti-MOF provides the circulation of Ti3+ and Ti4+ to the reaction of photocatalytic H2 generation, where the additional PANI and CoS amended the performance of H2 production through electron enrichment and thereby improving the stability and integrity of Ti-MOF. The Electrochemical studies demonstrated increased photocurrent by interweaving Ti-MOF crystal with PANI through cation-π interaction thereby enhancing interface connection and then promoting electron transfers. The charge dynamics revealed the initial charge transfer from photoexcited PANI to encapsulated MOF framework to boost the photocatalytic performance of the system. Further, the electron movement at the Ti-MOF/CoS interface is investigated through work function and electrochemical potential of electrons (Fermi level). DFT results demonstrate the importance of CoS in improving the photocatalytic performance of hybrid Ti-MOF catalyst, which leads to superior catalytic behaviour. These results establish that the encapsulation of catalytic active sites inside MOFs with desirable energy band gaps would be an ideal choice for the production of solar fuels.  相似文献   
7.
In this work, the composition-dependent point defect types and formation energies of RE2Hf2O7 (RE = La, Ce, Pr, Nd, Pm, Sm, Eu and Gd) as well as the oxygen diffusion behavior are systematically investigated by first-principles calculations. The possible defect reactions and dominant defect complexes under stoichiometric and non-stoichiometric conditions are revealed. It is found that O Frenkel pairs are the predominant defect in stoichiometric pyrochlore hafnates. Hf-RE cation anti-site defects, accompanied by RE vacancies and/or oxygen interstitials, are stable in the non-stoichiometric case of HfO2 excess. On the other hand, RE-Hf anti-site defects together with oxygen vacancies and/or RE interstitials are preferable in the case of RE2O3 excess. The energy barriers for the migration along the VO48f - VO48f pathway of pyrochlore hafnates were calculated to be between 0.81 eV and 0.89 eV. Based on these results, a defect engineering strategy is proposed and the pyrochlore hafnates investigated here are predicted to exhibit potential oxygen ionic conductivity.  相似文献   
8.
《Ceramics International》2022,48(22):32827-32836
To investigate the crystal structure, electrical properties, and magnetic properties of Ca–Sn co-doped Y3-xCaxFe5-xSnxO12 (x = 0.00–0.25 in steps of 0.05), solid-state reaction experiments, first principles calculations, and complex crystal bonding theoretical calculations were performed. The relative permittivity (εr) is strongly correlated with the average bond ionicity when Ca2+ is added. Furthermore, appropriate Sn4+ substitution significantly lowers the dielectric loss (tanδε) associated with the lattice energy. The right amount of Ca–Sn co-doping can change the saturation magnetization (4πMS) and improve the microscopic morphology of YIG, lowering the ferromagnetic resonance linewidth (ΔH) of YIG. The optimized microwave dielectric and magnetic properties are as follows: εr = 14.7, tanδε = 4.15 × 10?4, 4πMS = 1680 G, and ΔH = 53 Oe for Y2.8Ca0.2Fe4.8Sn0.2O12 sintered for 6 h at 1425 °C. Based on this material, a simple 3D model of a strip-line circulator with an insertion loss of less than 0.3 dB at each port and isolation greater than 20 dB in the 10–12 GHz range was developed, indicating the potential of the material for microwave high-frequency components such as circulators.  相似文献   
9.
Lithium (Li) metal, as an appealing candidate for the next-generation of high-energy-density batteries, is plagued by its safety issue mainly caused by uncontrolled dendrite growth and infinite volume expansion. Developing new materials that can improve the performance of Li-metal anode is one of the urgent tasks. Herein, a new MXene derivative containing pure rutile TiO2 and N-doped carbon prepared by heat-treating MXene under a mixing gas, exhibiting high chemical activity in molten Li, is reported. The lithiation MXene derivative with a hybrid of LiTiO2-Li3N-C and Li offers outstanding electrochemical properties. The symmetrical cell assembling lithiation MXene derivative hybrid anode exhibits an ultra-long cycle lifespan of 2000 h with an overpotential of ≈30 mV at 1 mA cm−2, which overwhelms Li-based anodes reported so far. Additionally, long-term operations of 34, 350, and 500 h at 10 mA cm−2 can be achieved in symmetrical cells at temperatures of −10, 25, and 50 °C, respectively. Both experimental tests and density functional theory calculations confirm that the LiTiO2-Li3N-C skeleton serves as a promising host for Li infusion by alleviating volume variation. Simultaneously, the superlithiophilic interphase of Li3N guides Li deposition along the LiTiO2-Li3N-C skeleton to avoid dendrite growth.  相似文献   
10.
The electrochemical water splitting to produce H2 in high efficiency with earth-abundant-metal catalysts remains a challenge. Here, we describe a simple “cyclic voltammetry + ageing” protocol at room temperature to activate Ni electrode (AC-Ni/NF) for hydrogen evolution reaction (HER), by which Ni/Ni(OH)2 heterostructure is formed at the surface. In situ Raman spectroscopy reveals the gradual growth of Ni/Ni(OH)2 heterostructure during the first 30 min of the aging treatment and combined with polarization measurements, it suggests a positive relation between the Ni/Ni(OH)2 amount and HER performance of the electrode. The obtained AC-Ni/NF catalyst, with plentiful Ni–Ni(OH)2 interfaces, exhibits remarkable performance towards HER, with the low overpotential of only 30 mV at a H2-evolving current density of 10 mA/cm2 and 153 mV at 100 mA/cm2, as well as a small Tafel slope of 46.8 mV/dec in 1 M KOH electrolyte at ambient temperature. The excellent HER performance of the AC-Ni/NF could be maintained for at least 24 h without obvious decay. Ex situ experiments and in situ electrochemical-Raman spectroscopy along with density functional theory (DFT) calculations reveal that Ni/Ni(OH)2 heterostructure, although partially reduced, can still persist during HER catalysis and it is the Ni–Ni(OH)2 interface reducing the energy barrier of H1 adsorption thus promoting the HER performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号