首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5533篇
  免费   630篇
  国内免费   402篇
电工技术   156篇
综合类   664篇
化学工业   1109篇
金属工艺   354篇
机械仪表   259篇
建筑科学   1239篇
矿业工程   162篇
能源动力   78篇
轻工业   319篇
水利工程   352篇
石油天然气   212篇
武器工业   56篇
无线电   269篇
一般工业技术   957篇
冶金工业   136篇
原子能技术   20篇
自动化技术   223篇
  2024年   7篇
  2023年   62篇
  2022年   133篇
  2021年   153篇
  2020年   150篇
  2019年   164篇
  2018年   181篇
  2017年   238篇
  2016年   238篇
  2015年   215篇
  2014年   326篇
  2013年   324篇
  2012年   384篇
  2011年   469篇
  2010年   309篇
  2009年   358篇
  2008年   350篇
  2007年   384篇
  2006年   367篇
  2005年   303篇
  2004年   235篇
  2003年   230篇
  2002年   173篇
  2001年   141篇
  2000年   102篇
  1999年   81篇
  1998年   76篇
  1997年   67篇
  1996年   65篇
  1995年   58篇
  1994年   37篇
  1993年   25篇
  1992年   30篇
  1991年   30篇
  1990年   18篇
  1989年   18篇
  1988年   16篇
  1987年   11篇
  1986年   5篇
  1985年   12篇
  1984年   1篇
  1983年   5篇
  1982年   5篇
  1981年   1篇
  1980年   4篇
  1979年   3篇
  1976年   1篇
排序方式: 共有6565条查询结果,搜索用时 15 毫秒
1.
In this work, we developed a novel system of isovalent Zr4+ and donor Nb5+ co-doped CaCu3Ti4O12 (CCTO) ceramics to enhance dielectric response. The influences of Zr4+ and Nb5+ co-substituting on the colossal dielectric response and relaxation behavior of the CCTO ceramics fabricated by a conventional solid-phase synthesis method were investigated methodically. Co-doping of Zr4+ and Nb5+ ions leads to a significant reduction in grain size for the CCTO ceramics sintered at 1060 °C for 10 h. XRD and Raman results of the CaCu3Ti3.8-xZrxNb0.2O12 (CCTZNO) ceramics show a cubic perovskite structure with space group Im-3. The first principle calculation result exhibits a better thermodynamic stability of the CCTO structure co-doped with Zr4+ and Nb5+ ions than that of single-doped with Zr4+ or Nb5+ ion. Interestingly, the CCTZNO ceramics exhibit greatly improved dielectric constant (~105) at a frequency range of 102–105 Hz and at a temperature range of 20–210 °C, indicating a giant dielectric response within broader frequency and temperature ranges. The dielectric properties of CCTZNO ceramics were analyzed from the viewpoints of defect-dipole effect and internal barrier layer capacitance (IBLC) model. Accordingly, the immensely enhanced dielectric response is primarily ascribed to the complex defect dipoles associated with oxygen vacancies by co-doping Zr4+ and Nb5+ ions into CCTO structure. In addition, the obvious dielectric relaxation behavior has been found in CCTZNO ceramics, and the relaxation process in middle frequency regions is attributed to the grain boundary response confirmed by complex impedance spectroscopy and electric modulus.  相似文献   
2.
《Ceramics International》2021,47(21):29722-29729
As semiconductor devices have become miniaturized and highly integrated, interconnection problems such as RC delays, power dissipation, and crosstalk appear. To alleviate these problems, materials with a low dielectric constant should be used for the interlayer dielectric in nanoscale semiconductor devices. Silica aerogel as a porous structure composed of silica and air can be used as the interlayer dielectric material to achieve a very low dielectric constant. However, the problem of its low stiffness needs to be resolved for the endurance required in planarization. The purpose of this study is to discover the geometric effect of the electrical and mechanical properties of silica aerogel. The effects of porosity, the distribution of pores, the number of pores on the dielectric constant, and elastic modulus were analyzed using FEM. The results suggest that the porosity of silica aerogel is the main parameter that determines the dielectric constant and it should be at least 0.76 to have a very low dielectric constant of 1.5. Additionally, while maintaining the porosity of 0.76, the silica aerogel needs to be designed in an ordered open pores structure (OOPS) containing 64 or more pores positioned in a simple cubic lattice point to endure in planarization, which requires an elastic modulus of 8 GPa to prevent delamination.  相似文献   
3.
This paper reports the thermal, morphological and mechanical properties of environmentally friendly poly(3-hydroxybutyrate) (PHB)/poly(butylene succinate) (PBS) and PHB/poly[(butylene succinate)-co-(butylene adipate)] (PBSA) blends, prepared by melt mixing. The blends are known to be immiscible, as also confirmed by the thermodynamic analysis here presented. A detailed quantification of the crystalline and amorphous fractions was performed, in order to interpret the mechanical properties of the blends. As expected, the ductility increased with increasing PBS or PBSA amount, but in parallel the decrease in the elastic modulus appeared limited. Surprisingly, the elastic modulus was found properly described by the rule of mixtures in the whole composition range, thus attesting mechanical compatibility between the two blend components. This unusual behavior has been explained as due to co-continuous morphology, present in a wide composition range, but also at the same time as the result of shrinkage occurring during sequential crystallization of the two components, which can lead to physical adhesion between matrix and dispersed phase. For the first time, the elastic moduli of the crystalline and mobile amorphous fractions of PBS and PBSA and of the mobile amorphous fraction of PHB at ambient temperature have been estimated through a mechanical modelling approach. © 2021 The Authors. Polymer International published by John Wiley & Sons Ltd on behalf of Society of Industrial Chemistry.  相似文献   
4.
The features of crystal structures, thermo-mechanical properties and their dominant mechanisms of weberites RE3NbO7 were studied as high-temperature oxides. We concentrated on connections between structures and thermo-mechanical properties, the influences of bond lengths, lattice distortion degrees and microstructures on these properties were estimated. The shortening of bond length and increment of bonding strength would lead to the increase of mechanical properties. The Vickers hardness (4.5-7.8 GPa) and toughness (0.5-1.6 MPa·m1/2) of weberites RE3NbO7 are enhanced by grain refinement and increment of bond strength, while crystal structures, bond lengths, and lattice distortion degrees influenced their Young's modulus (100-170 GPa). Nano-indentation was applied to test the influence of microstructures on modulus and hardness. The dominant mechanisms for mechanical properties and thermal conductivity were proposed, which was conducive to properties tailoring and engineering applications of weberites RE3NbO7 oxides.  相似文献   
5.
通过粉末冶金法制备了Ti-xCr、Ti-yCu及Ti-xCr-yCu钛基材料,研究了Cr、Cu含量对其相组成、显微组织、压缩屈服强度、弹性模量以及切削加工性能的影响规律。结果表明:随Cr含量的增加,Ti-xCr钛基材料依次出现了Ti_4Cr、TiCr_2及Cr相,其压缩屈服强度表现出先增大后减小的趋势,当Cr含量为10%时其屈服强度达到最大值(710 MPa),同时,添加Cr元素有利于降低钛基材料的弹性模量,最低可达25 GPa。添加Cu元素的钛基材料,随Cu含量的增加,Ti_2Cu相增加,并且显微组织细化,屈服强度降低;弹性模量受Cu含量影响较小而受烧结温度影响较大。添加Cr和Cu元素的钛基材料,其显微组织主要为网篮组织,弹性模量低于纯钛,其中添加Cu元素有利于细化层片,添加Cr元素有利于细化等轴组织。此外,Cr含量为5%时,钛基材料具有较佳的切削加工性能。  相似文献   
6.
The determination of elastic properties at application temperature is fundamental for the design of fibre reinforced ceramic composite components. An attractive method to characterize the flexural modulus at room and high temperature under specific atmosphere is the nondestructive Resonant Frequency Damping Analysis (RFDA). The objective of this paper was to evaluate and validate the modulus measurement via RFDA for orthotropic C/C-SiC composites at the application temperature. At room temperature flexural moduli of C/C-SiC with 0/90° reinforcement were measured under quasi-static 4-point bending loads and compared with dynamic moduli measured via RFDA longitudinally to fibre direction. The dynamic modulus of C/C-SiC was then measured via RFDA up to 1250°C under flowing inert gas and showed an increase with temperature which fitted with literature values. The measured fundamental frequencies were finally compared to those resulting from numerical modal analyses. Dynamic and quasi-static flexural moduli are comparable and the numerical analyses proved that bending modes are correctly modeled by means of dynamic modulus measured via RFDA. The nondestructive RFDA as well as the numerical modeling approach are suitable for evaluation of C/C-SiC and may be transferred to other fibre reinforced ceramic composite materials.  相似文献   
7.
8.
Vitamin D lost its functionality during processing and storage, thus, encapsulation with proteins is desirable to preserve bioactivity. The aim of the current study was to develop encapsulated vitamin D fortified mayonnaise (VDFM) using whey protein isolates (WPI) and soy protein isolates (SPI) as encapsulating materials in three different formulations, that is, 10% WPI, 10% SPI, and 5/5% WPI/SPI. Increased shear stress decreased the apparent viscosity along with significant effects on the loss modulus of VDFM. WPI encapsulates showed better results as compared to SPI. WPI based VDFM (M1) depicted the best results in terms of size and dispersion uniformity of oil droplets. Hue angle and total change differed significantly among treatments. The highest value for overall acceptability was acquired by M3 (5:5%WPI:SPI-encapsulates) thus proceed for in vivo trials. Serum vitamin D level was significantly higher in the encapsulated VDFM rat group (58.14 ± 6.29 nmol/L) than the control (37.80 ± 4.98 nmol/L). Conclusively, WPI and SPI encapsulates have the potential to improve the stability and bioavailability of vitamin D.  相似文献   
9.
原位胶结充填体质量评价通常采用单轴抗压强度作为表征指标,由于在现场工程中无法快速、准确获取充填体的强度值,因此需要建立一种参数易于获取且准确的原位胶结充填体强度预测模型。基于胶结充填体物理力学参数的内在联系,从量纲平衡的角度探索了胶结充填体单轴抗压强度与P波模量的关系。根据C矿和I矿两种原位胶结充填体的密度、P波速度及取芯强度的测试数据,采用线性拟合的方法获得了基于P波模量的原位胶结充填体强度预测模型。通过对C矿和I矿的强度预测模型拟合效果分析可知,P波模量与取芯强度呈正相关性,且拟合效果较好,证明原位胶结充填体强度预测模型精度高,具有很强的实用性。  相似文献   
10.
《Ceramics International》2020,46(5):5946-5959
The bond strength between thermally sprayed metal bond-coats and ceramic top-coats is a key factor in determining their service life. However, most studies focus on interface modifications. In this research, based on FeCrAl bond-coats prepared by arc spraying, top-coats (Al2O3-40 wt% TiO2) were prepared by plasma spraying, and heat treatment was carried out in a hypoxic atmosphere. Continuous gradient elastic modulus FeCrAl-ceramic coatings were successfully prepared, and the microstructural and mechanical properties from the substrate to the top-coats were systematically investigated. The Al2O3 content gradually decreased from the top-coats to the substrate, forming continuous gradient elastic modulus FeCrAl-ceramic coatings. The oxide formed during the heat treatment filled the defects in the bond-coats and greatly improved the mechanical properties of the coating. The bonding strength of the continuous gradient elastic modulus coating was 21.7% greater than that of the as-received coating.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号