首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71159篇
  免费   5098篇
  国内免费   4346篇
电工技术   4993篇
技术理论   9篇
综合类   5673篇
化学工业   6323篇
金属工艺   2735篇
机械仪表   2946篇
建筑科学   8011篇
矿业工程   1525篇
能源动力   2232篇
轻工业   1952篇
水利工程   1568篇
石油天然气   1601篇
武器工业   443篇
无线电   4169篇
一般工业技术   5476篇
冶金工业   4092篇
原子能技术   423篇
自动化技术   26432篇
  2024年   92篇
  2023年   896篇
  2022年   947篇
  2021年   1427篇
  2020年   1660篇
  2019年   1639篇
  2018年   1539篇
  2017年   1973篇
  2016年   2237篇
  2015年   2104篇
  2014年   4064篇
  2013年   4951篇
  2012年   3883篇
  2011年   4652篇
  2010年   3623篇
  2009年   4203篇
  2008年   4134篇
  2007年   4702篇
  2006年   4172篇
  2005年   3534篇
  2004年   3036篇
  2003年   2883篇
  2002年   2537篇
  2001年   2009篇
  2000年   1912篇
  1999年   1647篇
  1998年   1343篇
  1997年   1208篇
  1996年   1020篇
  1995年   980篇
  1994年   820篇
  1993年   715篇
  1992年   596篇
  1991年   505篇
  1990年   410篇
  1989年   352篇
  1988年   272篇
  1987年   214篇
  1986年   191篇
  1985年   254篇
  1984年   231篇
  1983年   219篇
  1982年   168篇
  1981年   138篇
  1980年   91篇
  1979年   101篇
  1978年   73篇
  1977年   76篇
  1976年   29篇
  1975年   25篇
排序方式: 共有10000条查询结果,搜索用时 250 毫秒
1.
In a typical embedded CPU, large on-chip storage is critical to meet high performance requirements. However, the fast increasing size of the on-chip storage based on traditional SRAM cells makes the area cost and energy consumption unsustainable for future embedded applications. Replacing SRAM with DRAM on the CPU’s chip is generally considered not worthwhile because DRAM is not compatible with the common CMOS logic and requires additional processing steps beyond what is required for CMOS. However a special DRAM technology, Gain-Cell embedded-DRAM (GC-eDRAM)  [1], [2], [3] is logic compatible and retains some of the good properties of DRAM (small and low power). In this paper we evaluate the performance of a novel hybrid cache memory where the data array, generally populated with SRAM cells, is replaced with GC-eDRAM cells while the tag array continues to use SRAM cells. Our evaluation of this cache demonstrates that, compared to the conventional SRAM-based designs, our novel architecture exhibits comparable performance with less energy consumption and smaller silicon area, enabling the sustainable on-chip storage scaling for future embedded CPUs.  相似文献   
2.
Development of efficient, low cost and multifunctional electrocatalysts for water splitting to harvest hydrogen fuels is a challenging task, but the combination of carbon materials with transition metal-based compounds is providing a unique and attractive strategy. Herein, composite systems based on cobalt ferrite oxide-reduced graphene oxide (Co2FeO4) @(rGO) using simultaneous hydrothermal and chemical reduction methods have been prepared. The proposed study eliminates one step associated with the conversion of GO into rGO as it uses direct GO during the synthesis of cobalt ferrite oxide, consequently rGO based hybrid system is achieved in-situ significantly, the optimized Co2FeO4@rGO composite has revealed an outstanding multifunctional applications related to both oxygen evolution reaction (OER) and hydrogen counterpart (HER). Various metal oxidation states and oxygen vacancies at the surface of Co2FeO4@rGO composites guided the multifunctional surface properties. The optimized Co2FeO4@rGO composite presents excellent multifunctional properties with onset potential of 0.60 V for ORR, an overpotential of 240 mV at a 20 mAcm?2 for OER and 320 mV at a 10 mAcm?2 for HER respectively. Results revealed that these multifunctional properties of the optimized Co2FeO4@ rGO composite are associated with high electrical conductivity, high density of active sites, crystal defects, oxygen vacancies, and favorable electronic structure arisinng from the substitution of Fe for Co atoms in binary spinel oxide phase. These surface features synergistically uplifted the electrocatalytic properties of Co2FeO4@rGO composites. The multifunctional properties of the Co2FeO4@ rGO composite could be of high interest for its use in a wide range of applications in sustainable and renewable energy fields.  相似文献   
3.
This paper investigates PID control design for a class of planar nonlinear uncertain systems in the presence of actuator saturation. Based on the bounds on the growth rates of the nonlinear uncertain function in the system model, the system is placed in a linear differential inclusion. Each vertex system of the linear differential inclusion is a linear system subject to actuator saturation. By placing the saturated PID control into a convex hull formed by the PID controller and an auxiliary linear feedback law, we establish conditions under which an ellipsoid is contractively invariant and hence is an estimate of the domain of attraction of the equilibrium point of the closed-loop system. The equilibrium point corresponds to the desired set point for the system output. Thus, the location of the equilibrium point and the size of the domain of attraction determine, respectively, the set point that the output can achieve and the range of initial conditions from which this set point can be reached. Based on these conditions, the feasible set points can be determined and the design of the PID control law that stabilizes the nonlinear uncertain system at a feasible set point with a large domain of attraction can then be formulated and solved as a constrained optimization problem with constraints in the form of linear matrix inequalities (LMIs). Application of the proposed design to a magnetic suspension system illustrates the design process and the performance of the resulting PID control law.   相似文献   
4.
《Ceramics International》2022,48(14):20158-20167
Vacuum induction melting is a potential process for the preparation of TiAl alloys with good homogeneity and low cost. But the crucial problem is a selection of high stability refractory. In this study, a BaZrO3/Y2O3 dual-phase refractory was prepared and its performance for melting TiAl alloys was studied and compared with that of a Y2O3 refractory. The results showed the dual-phase refractory consisted of BaZr1-xYxO3-δ and Y2O3(ZrO2), exhibited a thinner interaction layer (30 μm) than the Y2O3 refractory (90 μm) after melting the TiAl alloy. Although the TiAl alloys melted in the dual-phase and Y2O3 refractory exhibited similar oxygen contamination (<0.1 wt%), the alloy melted in the dual-phase refractory had smaller Y2O3 inclusion content and size than that in the Y2O3 refractory, indicating that the dual-phase refractory exhibited a better melting performance than the Y2O3 refractory. This study provides insights into the process of designing highly stable refractory for melting TiAl alloys.  相似文献   
5.
《Ceramics International》2022,48(20):29892-29899
It is very challenging for 3D printing based on the selective laser melting (SLM) technology to obtain cermet bulk materials with high density and homogeneous microstructures. In this work, the SLM process of the cermet powders was studied by both simulations and experiments using the WC-Co cemented carbides as an example. The results indicated that the evolution of the ceramic and metallic phases in the cermet particle during the heating, melting and solidification processes were all significantly inhomogeneous from atomic scale to mesoscale microstructures. As a consequence, the microstructural defects were caused intrinsically in the printed bulk material. The formation and growth of the bonding necks between the particles were mainly completed at the later stage of laser heating and the early stage of solidification. Both simulations and experiments demonstrated that thin amorphous layers formed at the ceramics/metal interfaces. This work disclosed the mechanisms for the evolution from the atomic scale to microstructure during the SLM printing of cermet powders, and discovered the origin of the defects in the printed cermet bulk materials.  相似文献   
6.
A new catalyst for both water reduction and oxidation, based on an infinite chain, {[Ni(tn)2]3 [Fe(CN)4 (μ-CN)2]2}n, is formed by the reaction of NiCl2, 1,3-propanediamine (tn) and K3 [Fe(CN)6]. {[Ni(tn)2]3 [Fe(CN)4 (μ-CN)2]2}n can electro-catalyze hydrogen evolution from a neutral aqueous buffer (pH 7.0) with a turnover frequency (TOF) of 1561 mol of hydrogen per mole of catalyst per hour (H2/mol catalyst/h) at an overpotential (OP) of 837 mV {[Ni(tn)2]3 [Fe(CN)4 (μ-CN)2]2}n also can electro-catalyze O2 production from water with a TOF of ~45 mol O2 (mol cat)?1s?1 at an OP of 591 mV. Under blue light (λ = 469 nm), together with CdS nanorods (CdS NRs) as a photosensitizer, and ascorbic acid (H2A) as a sacrificial electron donor, {[Ni(tn)2]3 [Fe(CN)4 (μ-CN)2]2}n can photo-catalyze hydrogen generation from an aqueous buffer (pH 4.0) with a turnover number (TON) of 11,450 mol H2 per mole of catalyst (mol of H2 (mol of cat)?1) during 10 h irradiation. The average of apparent quantum yield (AQY) is as high as 40.96% during 10 h irradiation. Studies indicate that {[Ni(tn)2]3 [Fe(CN)4 (μ-CN)2]2}n exists in two forms: a cyano-bridged chain ({[Ni(tn)2]3 [Fe(CN)4 (μ-CN)2]2}n) in solid, and a salt ([Ni(tn)2]3 [Fe(CN)6]2) in aqueous media; Catalytic reaction occurs on the nickel center of [Ni(tn)2]2+, and the introduction of [Fe(CN)6]3- can improve the catalytic efficiency of [Ni(tn)2]2+ for H2 or O2 generation. We hope these findings can afford a new method for the design of catalysts for both water reduction and oxidation.  相似文献   
7.
Residential natural gas consumption depends on several factors. Available tools and methods to identify, categorize, and validate effective factors have some limitations, making consumption modeling more complex. Once a comprehensive model of effective consumption factors is developed for residential gas consumers, it can predict consumption. In addition, such a model could be used to verify the accuracy of measuring devices in order to reduce unaccounted for gas (UFG). The key factors affecting residential gas consumption were identified based on previous studies and their mutual effects were analyzed using a fuzzy cognitive mapping (FCM) method. The most significant factors and their effects on natural gas consumption in the residential sector were determined. In this study, for the first time, the expected consumption for each consumer was estimated using a consumption index. Generally, if the estimated consumption is significantly different from the amount recorded by the meter, it could suggest a potential source of UFG. The proposed method was applied to the data collected from the residential gas consumers of a small region in Iran (Dasht-e Arjan region, Fars province), and the results demonstrate the effectiveness of the proposed method.  相似文献   
8.
In this study, a three-dimensional model was established using the lattice Boltzmann method (LBM) to study the internal ice melting process of the gas diffusion layer (GDL) of the proton exchange membrane fuel cell (PEMFC). The single-point second-order curved boundary condition was adopted. The effects of GDL carbon fiber number, growth slope of the number of carbon fibers and carbon fiber diameter on ice melting were studied. The results were revealed that the temperature in the middle and lower part of the gradient distribution GDL is significantly higher than that of the no-gradient GDL. With the increase of the growth slope of the number of carbon fiber, the temperature and melting rate gradually increase, and the position of the solid-liquid interface gradually decreases. The decrease in the number of carbon fibers has a similar effect as the increase in the growth slope of the number of carbon fibers. In addition, as the diameter of the carbon fiber increases, the position of the solid-liquid interface gradually decreases first and then increases.  相似文献   
9.
Smartphones are a promising tool as student response systems (SRS) for interactive teaching due to their widespread diffusion. Here, the main purpose is to assess the efficacy of smartphone-based SRS in large classroom settings of undergraduate Thermodynamics, as representative of engineering courses requiring high-level cognitive skills for problem solving. Four sets of multiple-choice questions were presented during the course. Overall, the results refer to 1055 students between control and SRS classes, each corresponding to a3 years period.One of the main results of this work is the strong linear correlation between the average questionnaire score and the final exam grade (R2 = 0.91). A similar correlation, although with a lower value of R2, is already found in the first questionnaire, thus showing the SRS high predictive power of class performance. The results of this study provide guidance for a quantitative use of smartphone-based SRS in teaching basic disciplines. The SRS monitoring capability allows early detection of struggling students, thus paving the way to personalized tutoring and improved student engagement in active learning practices. This approach is especially important in emergency situations, such as the SARS-Cov-2 pandemic, when distance learning is widely adopted, and remote interactive tools are highly needed.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号