首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1484篇
  免费   100篇
  国内免费   1篇
电工技术   12篇
综合类   6篇
化学工业   459篇
金属工艺   42篇
机械仪表   39篇
建筑科学   27篇
矿业工程   16篇
能源动力   33篇
轻工业   118篇
水利工程   9篇
石油天然气   14篇
无线电   119篇
一般工业技术   357篇
冶金工业   74篇
原子能技术   38篇
自动化技术   222篇
  2023年   17篇
  2022年   14篇
  2021年   91篇
  2020年   44篇
  2019年   52篇
  2018年   56篇
  2017年   41篇
  2016年   70篇
  2015年   43篇
  2014年   84篇
  2013年   107篇
  2012年   90篇
  2011年   108篇
  2010年   89篇
  2009年   98篇
  2008年   87篇
  2007年   65篇
  2006年   61篇
  2005年   53篇
  2004年   40篇
  2003年   43篇
  2002年   31篇
  2001年   14篇
  2000年   9篇
  1999年   7篇
  1998年   8篇
  1997年   18篇
  1996年   12篇
  1995年   3篇
  1994年   12篇
  1993年   13篇
  1992年   5篇
  1991年   2篇
  1989年   6篇
  1988年   7篇
  1987年   4篇
  1986年   6篇
  1985年   9篇
  1984年   6篇
  1983年   8篇
  1982年   9篇
  1981年   7篇
  1980年   4篇
  1979年   9篇
  1978年   2篇
  1977年   3篇
  1976年   7篇
  1964年   1篇
  1963年   1篇
  1962年   1篇
排序方式: 共有1585条查询结果,搜索用时 31 毫秒
1.
Journal of Materials Science: Materials in Electronics - A comprehensive understanding of the resistive switching mechanisms that activate REDOX-based random access memory devices is necessary to...  相似文献   
2.
An addition of boron largely increases the ductility in polycrystalline high-temperature Co–Re alloys. Therefore, the effect of boron on the alloy structural characteristics is of high importance for the stability of the matrix at operational temperatures. Volume fractions of ε (hexagonal close-packed—hcp), γ (face-centered cubic—fcc) and σ (Cr2Re3 type) phases were measured at ambient and high temperatures (up to 1500 °C) for a boron-containing Co–17Re–23Cr alloy using neutron diffraction. The matrix phase undergoes an allotropic transformation from ε to γ structure at high temperatures, similar to pure cobalt and to the previously investigated, more complex Co–17Re–23Cr–1.2Ta–2.6C alloy. It was determined in this study that the transformation temperature depends on the boron content (0–1000 wt. ppm). Nevertheless, the transformation temperature did not change monotonically with the increase in the boron content but reached a minimum at approximately 200 ppm of boron. A probable reason is the interplay between the amount of boron in the matrix and the amount of σ phase, which binds hcp-stabilizing elements (Cr and Re). Moreover, borides were identified in alloys with high boron content.  相似文献   
3.
Zinc sulphide (ZnS) nanoparticles were prepared by an aerosol method from zinc acetate and sodium sulphide (Na2S) aqueous solutions. Aqueous solution of zinc acetate was dispersed into the form of microdroplets, which were introduced by airflow to vigorously stirred aqueous solution of Na2S, which was in excess. Microdroplets served as microreactors, so the reaction took place only in limited volume. Particle size distribution was studied by transmission electron microscopy and by dynamic light scattering measurements. In this work, the equation that allows us to predict the final size distribution of ZnS nanoparticles using exact concentration of zinc acetate was derived and ZnS nanoparticles with predicted mean particle diameter around 50 and 70?nm were successfully synthetised.  相似文献   
4.
The development and optimisation of piezoceramics are targeted usually to enhance their piezoelectric properties evaluated by both the direct or indirect measurement methods. The presented work aims to elaborate on the correlation of one direct (Berlincourt) and two indirect (convert and field-dependent) piezoelectric measurement methods on various material states. The role of the ceramic powder treatment by ball milling and electrophoretic deposition (EPD) technique on the determined electric properties as well as basic physical and mechanical properties of (Ba0.85Ca0.15) (Zr0.1Ti0.9)O3 ceramics (BCZT) was investigated. It was found that the EPD technologically supported by milling allows obtaining thick and dense deposits (>2 mm). After sintering, the BCZT ceramics with a relative density of >95%, hardness in the range of 2.3–2.9 GPa and piezoelectric coefficients of d33* = 940 pm/V, d33(E=0) = 427 pm/V and d33 = 364 pC/N can be achieved. Reported results also suggest that indirect (field-dependent) and direct (Berlincourt) measurements of the piezoelectric coefficients can be comparable at optimal poling conditions.  相似文献   
5.
Gasoline engine emissions have been classified as possibly carcinogenic to humans and represent a significant health risk. In this study, we used MucilAir™, a three-dimensional (3D) model of the human airway, and BEAS-2B, cells originating from the human bronchial epithelium, grown at the air-liquid interface to assess the toxicity of ordinary gasoline exhaust produced by a direct injection spark ignition engine. The transepithelial electrical resistance (TEER), production of mucin, and lactate dehydrogenase (LDH) and adenylate kinase (AK) activities were analyzed after one day and five days of exposure. The induction of double-stranded DNA breaks was measured by the detection of histone H2AX phosphorylation. Next-generation sequencing was used to analyze the modulation of expression of the relevant 370 genes. The exposure to gasoline emissions affected the integrity, as well as LDH and AK leakage in the 3D model, particularly after longer exposure periods. Mucin production was mostly decreased with the exception of longer BEAS-2B treatment, for which a significant increase was detected. DNA damage was detected after five days of exposure in the 3D model, but not in BEAS-2B cells. The expression of CYP1A1 and GSTA3 was modulated in MucilAir™ tissues after 5 days of treatment. In BEAS-2B cells, the expression of 39 mRNAs was affected after short exposure, most of them were upregulated. The five days of exposure modulated the expression of 11 genes in this cell line. In conclusion, the ordinary gasoline emissions induced a toxic response in MucilAir™. In BEAS-2B cells, the biological response was less pronounced, mostly limited to gene expression changes.  相似文献   
6.
Understanding the batch-to-glass conversion process is fundamental to optimizing the performance of glass-melting furnaces and ensuring that furnace modeling can correctly predict the observed outcome when batch materials or furnace conditions change. To investigate the kinetics of silica dissolution, gas evolution, and primary foam formation and collapse, we performed X-ray diffraction, thermal gravimetry, feed expansion tests, and evolved gas analysis of batch samples heated at several constant heating rates. We found that gas evolving reactions, foaming, and silica dissolution depend on the thermal history of the batch in a similar manner: the kinetic parameters of each process were linear functions of the square root of the heating rate. This kinetic similarity reflects the stronger-than-expected interdependence of these processes. On the basis of our results, we suggest that changes in furnace operating conditions, such as firing or boosting, influence the melting rate less than what one would expect without consideration of batch conversion kinetics.  相似文献   
7.
The results of an experimental and theoretical study of the ignition of H2–O2?Ar mixtures behind reflected shock waves are reported. The experiments are performed with mixtures containing from 0.15 to 8.0% H2 and from 0.75 to 2.0% O2 at temperatures of 980–1800 K and a total gas concentration of (1.0 ± 0.1) × 10?5 mol/cm3. The progress of the process is monitored by recording the time evolution of the pressure behind the reflected shock wave and the intensity of the chemiluminescence of electronically excited OH1 radicals (λ = 308 ± 2.5 nm). A numerical model capable of predicting the effects of additional factors, such as hydrocarbon impurities, the vibrational relaxation of the test mixture, and boundary-layer-induced pressure rise, is developed and used to simulate our own and published experimental data on the ignition of H2–O2?Ar mixtures. It is demonstrated that the best agreement between experimental and theoretical results is achieved when all the additional factors are taken into account. A sensitivity analysis shows that the effects of the vibrational relaxation of the test mixture and the presence of hydrocarbon impurities are significant only for lean mixtures, whereas the influence of the boundary-layer-induced pressure rise is important across a wide range of stoichiometries at long ignition delay times. Additionally, an analytical model is developed, which takes into account the finite time of the chain?propagation reactions O + H2 and OH + H2. The predictions of the numerical and analytical models are demonstrated to be in close agreement for a wide range of mixture compositions and experimental conditions.  相似文献   
8.
Histone deacetylase (HDAC) activity is modulated in vivo by post-translational modifications and formation of multiprotein complexes. Novel chemical tools to study how these factors affect engagement of HDAC isoforms by HDAC inhibitors (HDACi) in cells and tissues are needed. In this study, a synthetic strategy to access chemically diverse photoreactive probes (PRPs) was developed and used to prepare seven novel HDAC PRPs 9 – 15 . The class I HDAC isoform engagement by PRPs was determined in biochemical assays and photolabeling experiments in live SET-2, HepG2, HuH7, and HEK293T cell lines and in mouse liver tissue. Unlike the HDAC protein abundance and biochemical activity against recombinant HDACs, the chemotype of the PRPs and the type of cells were key in defining the engagement of HDAC isoforms in live cells. Our findings suggest that engagement of HDAC isoforms by HDACi in vivo may be substantially modulated in a cell- and tissue-type-dependent manner.  相似文献   
9.
Hydrogen diffusivity and trapping have been studied in two advanced high strength steel grades and model samples using electrochemical permeation test. Microstructures of CP1000 and DP1000 steels consist of ferrite, martensite and a small fraction of retained austenite. In addition, bainite is present in CP1000. Model phases with predominance of a particular phase have been prepared by specific heat treatment. DP1000 has shown the lowest diffusivity among all materials, while ferritic model sample has shown the highest. Differences in hydrogen diffusion coefficient values are linked to trapping microstructural characteristics and grain size.  相似文献   
10.
Calcium oxalate (CaOx) is the major phase in kidney stones and the primary calcium storage medium in plants. CaOx can form crystals with different lattice types, water contents, and crystal structures. However, the conditions and mechanisms leading to nucleation of particular CaOx crystals are unclear. Here, liquid-cell transmission electron microscopy and atomistic molecular dynamics simulations are used to study in situ CaOx nucleation at different conditions. The observations reveal that rhombohedral CaOx monohydrate (COM) can nucleate via a classical pathway, while square COM can nucleate via a non-classical multiphase pathway. Citrate, a kidney stone inhibitor, increases the solubility of calcium by forming calcium-citrate complexes and blocks oxalate ions from approaching calcium. The presence of multiple hydrated ionic species draws additional water molecules into nucleating CaOx dihydrate crystals. These findings reveal that by controlling the nucleation pathways one can determine the macroscale crystal structure, hydration state, and morphology of CaOx.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号