首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26313篇
  免费   2976篇
  国内免费   1038篇
电工技术   1507篇
技术理论   1篇
综合类   1691篇
化学工业   8013篇
金属工艺   4058篇
机械仪表   720篇
建筑科学   815篇
矿业工程   1854篇
能源动力   785篇
轻工业   1254篇
水利工程   138篇
石油天然气   448篇
武器工业   69篇
无线电   1053篇
一般工业技术   3391篇
冶金工业   4017篇
原子能技术   306篇
自动化技术   207篇
  2024年   49篇
  2023年   443篇
  2022年   611篇
  2021年   934篇
  2020年   950篇
  2019年   827篇
  2018年   749篇
  2017年   987篇
  2016年   1186篇
  2015年   1014篇
  2014年   1476篇
  2013年   1635篇
  2012年   1817篇
  2011年   1856篇
  2010年   1368篇
  2009年   1241篇
  2008年   1040篇
  2007年   1546篇
  2006年   1464篇
  2005年   1266篇
  2004年   1151篇
  2003年   990篇
  2002年   946篇
  2001年   781篇
  2000年   693篇
  1999年   569篇
  1998年   426篇
  1997年   368篇
  1996年   326篇
  1995年   320篇
  1994年   260篇
  1993年   185篇
  1992年   192篇
  1991年   132篇
  1990年   118篇
  1989年   91篇
  1988年   73篇
  1987年   44篇
  1986年   40篇
  1985年   35篇
  1984年   28篇
  1983年   18篇
  1982年   32篇
  1981年   17篇
  1980年   8篇
  1978年   4篇
  1977年   4篇
  1975年   2篇
  1974年   3篇
  1951年   6篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
1.
In this study, chemically bonded phosphate ceramic coatings (CBPCCs) with different contents of aluminum phosphate (AP) are prepared on stainless steel (AISI 304L). Differential scanning calorimetry, X-ray diffraction, contact angle test, and a tribocorrosion experiment are carried out to clarify the role of AP in the tribocorrosion performance of CBPCCs. The results show that, with the increase in the AP content, the enthalpy of curing increases because of the greater formation of the bonding phase AlPO4. Both in static corrosion and in tribocorrosion, the corrosion current density of CBPCCs achieves the lowest value when the weight ratio of AP to polytetrafluoroethylene is about 0.78. Additionally, the influence mechanism of AP on tribocorrosion is clarified. AlPO4 from the reaction between AP and Al2O3 has excellent mechanical properties and can enhance the wear resistance of CBPCCs by reducing the mechanical wear and the increased wear due to corrosion. The alumina particles wrapped by AlPO4 can form a dense and smooth surface and change the direction of electrolyte propagation, which leads to the increase in the tribocorrosion resistance of CBPCCs.  相似文献   
2.
Large interfacial resistance plays a dominant role in the performance of all-solid-state lithium-ion batteries. However, the mechanism of interfacial resistance has been under debate. Here, the Li+ transport at the interfacial region is investigated to reveal the origin of the high Li+ transfer impedance in a LiCoO2(LCO)/LiPON/Pt all-solid-state battery. Both an unexpected nanocrystalline layer and a structurally disordered transition layer are discovered to be inherent to the LCO/LiPON interface. Under electrochemical conditions, the nanocrystalline layer with insufficient electrochemical stability leads to the introduction of voids during electrochemical cycles, which is the origin of the high Li+ transfer impedance at solid electrolyte-electrode interfaces. In addition, at relatively low temperatures, the oxygen vacancies migration in the transition layer results in the formation of Co3O4 nanocrystalline layer with nanovoids, which contributes to the high Li+ transfer impedance. This work sheds light on the mechanism for the high interfacial resistance and promotes overcoming the interfacial issues in all-solid-state batteries.  相似文献   
3.
The positive effects of a lithiophilic substrate on the electrochemical performance of lithium metal anodes are confirmed in several reports, while the understanding of lithiophilic substrate-guided lithium metal nucleation and growth behavior is still insufficient. In this study, the effect of a lithiophilic surface on lithium metal nucleation and growth behaviors is investigated using a large-area Ti3C2Tx MXene substrate with a large number of oxygen and fluorine dual heteroatoms. The use of the MXene substrate results in a high lithium-ion concentration as well as the formation of uniform solid–electrolyte-interface (SEI) layers on the lithiophilic surface. The solid–solid interface (MXene-SEI layer) significantly affects the surface tension of the deposited lithium metal nuclei as well as the nucleation overpotential, resulting in the formation of uniformly dispersed lithium nanoparticles ( ≈ 10–20 nm in diameter) over the entire MXene surface. The primary lithium nanoparticles preferentially coalesce and agglomerate into larger secondary particles while retaining their primary particle shapes. Subsequently, they form close-packed structures, resulting in a dense metal layer composed of particle-by-particle microstructures. This distinctive lithium metal deposition behavior leads to highly reversible cycling performance with high Columbic efficiencies >  99.0% and long cycle lives of over 1000 cycles.  相似文献   
4.
Lithium metal anodes (LMAs) are promising for next-generation batteries but have poor compatibility with the widely used carbonate-based electrolytes, which is a major reason for their severe dendrite growth and low Coulombic efficiency (CE). A nitrate additive to the electrolyte is an effective solution, but its low solubility in carbonates is a problem that can be solved using a crown ether, as reported. A rubidium nitrate additive coordinated with 18-crown-6 crown ether stabilizes the LMA in a carbonate electrolyte. The coordination promotes the dissolution of NO3 ions and helps form a dense solid electrolyte interface that is Li3N-rich which guides uniform Li deposition. In addition, the Rb (18-crown-6)+ complexes are adsorbed on the dendrite tips, shielding them from Li deposition on the dendrite tips. A high CE of 97.1% is achieved with a capacity of 1 mAh cm−2 in a half cell, much higher than when using the additive-free electrolyte (92.2%). Such an additive is very compatible with a nickel-rich ternary cathode at a high voltage, and the assembled full battery with a cathode material loading up to 10 mg cm−2 shows an average CE of 99.8% over 200 cycles, indicating a potential for practical use.  相似文献   
5.
Phosphate ester was investigated as a corrosion inhibitor for AISI 1018 carbon steel in carbon dioxide-saturated chloride solutions at different temperatures and pressures. The corrosion tests were realized by electrochemical techniques, weight loss measurements, bubble tests, and a high-pressure/high-temperature autoclave system. The corrosion tests demonstrated that the investigated molecule is an excellent corrosion inhibitor. The inhibiting effect is even bigger at high pressure and temperature than at atmospheric pressure and room temperature. The thermodynamic parameters were calculated and determined to obey the Langmuir isotherm. Polarization studies revealed that the evaluated inhibitor is a mixed type.  相似文献   
6.
《Ceramics International》2021,47(18):25863-25874
The inherent brittleness of bioceramics restricts their applications in load-bearing implant, although they possess good biocompatibility and bioactivity. ZnO, MgO and 58S bioglass (BG) were incorporated as additives to further improve the mechanical properties and biocompatibility of β-TCP and ZnO/MgO/BG-β-TCP composite scaffolds were manufactured via digital light processing (DLP). The composite with the best comprehensive performance was selected for degradation behavior and biocompatibility evaluation. The effects of different proportions of ZnO/MgO/BG on mechanical strength were analyzed and ZnO0·5/MgO1/BG2-β-TCP (ZMBT) samples exhibited superior mechanical strength. The improvement by 272% and 99% respectively was achieved in fracture toughness and compressive strength with the optimal recipe. The enhancement effect is realized through phase transition, alterative sliding actions and transgranular fracture to effectively prevent the load transfer combining the functions of bioglass and metal oxide. ZMBT scaffolds exhibited a more desirable pH environment and an enhanced ability of apatite-mineralization formation, meanwhile Si4+, Mg2+ and Zn2+ were gradually released from scaffolds. Furthermore, in vitro evaluation indicated that ZMBT scaffolds presented not only excellent cell attachment, proliferation, alkaline phosphatase (ALP) activity, but they up-regulated osteogenic gene (ALP, OCN, Runx2). These results suggest that the addition of ZnO/MgO/BG to DLP-printed β-TCP scaffolds offer a smart strategy to fabricate porous scaffolds with conspicuously better biological and physicochemical properties including compressive strength, bioactivity, osteogenesis and osteogenesis-related gene expression. Metal-oxide and BG synergistically enhanced the mechanical and biological properties which make the ZMBT scaffolds a strong candidate for bone repair applications.  相似文献   
7.
8.
针对我国西部某铁矿强磁选尾矿进行了反浮选回收铁资源的试验研究, 探讨了pH值、抑制剂可溶性淀粉用量、阳离子捕收剂十二胺用量对浮选指标的影响。结果表明, 在矿浆pH=10、可溶性淀粉用量2 400 g/t、十二胺用量400 g/t条件下进行一粗一精(精选药剂用量减半)闭路反浮选, 可获得铁品位43.88%、回收率50.93%的铁精矿产品。  相似文献   
9.
10.
《Ceramics International》2022,48(22):33361-33372
Calcium phosphate cements (CPCs) have been increasingly used as synthetic bone substitutes for repair and regeneration of bone defects given their biocompatibility, resemblance to bone and malleability. Moreover, their use as local antibiotic delivery systems is of main interest against bone infections, avoiding the adverse effects of high dosages of conventional therapy. The main goals of this work were to improve the properties of a commercial CPC (Neocement®), turning it injectable, and to provide it with a new functionality as a drug delivery system able to ensure a sustained release of an antibiotic commonly used in orthopaedics (gentamicin sulphate, GS). For this, the influence of the liquid phase amount (%LP) and type of polymer contained in the formulation (chitosan, Chi, or hydroxypropyl methylcellulose, HPMC) on the basic properties of the material was evaluated. It was found that the formulation containing 42%LP + HPMC+1.87% wt GS was the best one. It showed suitable setting and mechanical properties, and injectability around 87% (much superior to the original Neocement®, with 31%). It ensured a sustained release of GS for at least 14 days, at antibacterial levels. The antibiotic released is highly effective against S. epidermidis, but also presents some antibacterial activity against S. aureus. The CPC revealed to be non-cytotoxic. Moreover, it demonstrated good flowability and connectivity with human cadaveric trabecular bone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号