首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   4篇
化学工业   9篇
金属工艺   2篇
一般工业技术   1篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2009年   1篇
  2008年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
Chemical vapor deposition growth of one-dimensional nanomaterials usually demands substrates that have been coated with a layer of catalyst film. In this study, a green process to synthesize boron nitfide (BN) nanowires directly on commercial stainless steel foils was proposed by heating boron and zinc oxide powders under a mixture gas flow of N2 arid 15% H2 at 1100℃, and a large quantities of pure h-BN nanowires have been produced directly on commercial stainless steel foil. The stainless steel foils not only acted as the substrate but also the catalyst for the nanowire growth. The synthesized BN nanowires were characterized by X-ray diffraction, scanning and transmission electron microscopes, X-ray energy dispersive spectrometer and photoluminescence spectroscopy, The nanowires also possess strong PL emission bands at 515, 535, and 728 nm.  相似文献   
2.
硼碳氮(BCN)多孔材料因其具有高的比表面积、优异的化学稳定性而被认为是一种优异的吸附材料。本文以废弃椰壳、硼酸(H3BO3)和尿素(CO(NH2)2)为原料,采用冷冻干燥法制备多孔生胚,并在NH3气氛下通过高温固相反应法在不同的反应温度下合成BCN多孔材料。结果表明,随着反应温度的升高,BCN多孔材料孔径逐渐变大,当反应温度为950 ℃时平均孔径为2.1 nm。将BCN多孔材料用于吸附水中孔雀石绿(MG)有机染料,其最大吸附量可达1 239.8 mg·g-1,5次循环再生后吸附量平均值仍高达1 138.6 mg·g-1,说明BCN多孔材料具有优异的循环吸附性能。采用Langmuir和Freundlich等温吸附模型、准一级和准二级吸附动力学模型研究了浓度、吸附时间和平衡吸附量之间的关系。结果表明,BCN多孔材料的吸附与准二级吸附动力学模型吻合,其对MG的吸附属于均匀表面单层分子的Langmuir等温吸附。BCN多孔材料展现出优异的吸附能力,是一种非常有应用前景的新型吸附剂。  相似文献   
3.
以α-Si_3N_4粉末为原料、Al_2O_3–RE_2O_3(RE=Lu,Y,Gd和La)为烧结助剂,在1 800℃压烧结制备氮化硅陶瓷,研究了不同烧结助剂对材料的相组成、微观结构和力学性能的影响。结果表明:样品中α-Si_3N_4完全转化为β-Si_3N_4,所形成的长柱状晶粒生长发育良好。随着稀土阳离子半径的增大,材料的相对密度和力学性能呈增加趋势,其中Si_3N_4–Al_2O_3–Gd_2O_3的抗弯强度和断裂韧性分别达到860 MPa和7.2 MPa·m~(1/2)。由于稀土离子对烧结液相黏度的影响,Si_3N_4–Al_2O_3–Lu_2O_3和Si_3N_4–Al_2O_3–Y_2O_3中出现了晶粒异常长大的现象,而Si_3N_4–Al_2O_3–La_2O_3的基体与柱状晶粒界面结合较大导致材料力学性能降低。  相似文献   
4.
三元化合物硼碳氮纳米管作为碳纳米管和氮化硼纳米管的衍生物,其禁带宽度主要取决于纳米管的成分,与手性和直径无关,且在0~5.5 eV范围内可调;另外,硼碳氮纳米管具有优良的电学性能、高硬度、高耐磨性及高温抗氧化等性质,使其在电子、光电子和纳米器件等领域具有广阔的应用前景。综述了硼碳氮纳米管制备方法的研究现状,并介绍了材料的生长机理、结构、性质和应用前景,简述了工艺条件对纳米管形成的影响,并对今后硼碳氮纳米管的研究方向提出了设想与展望。  相似文献   
5.
采用光纤激光同轴送粉技术制备了CoNiCrAlY高温合金格栅结构熔覆层,采用模拟飞机发动机叶尖高速刮削试验机研究了熔覆层的刮削性能。采用扫描电子显微镜、三维数字显微镜、激光共聚焦显微镜、显微硬度计等对合金格栅的微观结构和力学性能进行了分析测试。结果表明:研制的熔覆层具有致密的微观组织,物相组成与前驱粉末基本一致;熔覆层的维氏显微硬度值为(357±20)HV0.2;1 000℃热处理后的熔覆层与处理前的组织结构无太大区别,维氏显微硬度值为(345±20)HV0.2;在相同刮削实验参数条件下,间距2、3和4 mm格栅结构的磨损量差别较大,其中3 mm格栅结构及其对摩的叶片的质量损失都最小,且摩擦振动较小,表明间距为3 mm格栅结构的可刮削性能优于间距为2 mm和4 mm格栅结构。  相似文献   
6.
杨欢  李崴  许蒙  陈拥军  骆丽杰 《精细化工》2021,38(5):941-946
采用HCl溶液和HNO3溶液对氮化硼纳米管(BNNTs)进行纯化和氧化,制备了羟基化的BNNTs(BNNTs-OH).采用XPS、FTIR、TG、TEM、Zeta电位和PL对BNNTs-OH的形貌、结构和性能进行了表征.结果表明,BNNTs被成功氧化并截短,在B位点引入了—OH.BNNTs-OH在水溶液中具有很好的分散性,平均水合粒径约为1246.7 nm.BNNTs-OH具有特殊的荧光特性,在372 nm激发波长下可以发红色的光,实现材料在细胞内的定位.细胞毒性测试表明,BNNTs-OH对人胚胎肝细胞系L02细胞未呈现毒性.  相似文献   
7.
纳米材料的生物相容性与其形貌、缺陷、表面性能以及杂质息息相关。本文先后采用HCl溶液和HNO3溶液对氮化硼纳米管(BNNTs)进行纯化和氧化,制备了羟基化的BNNTs (BNNTs-OH)。采用XPS、FTIR、TG、TEM、Zeta电位和PL对BNNTs-OH的形貌、结构和性能进行了表征。结果表明,BNNTs被成功氧化并截短,在B位点引入了—OH。BNNTs-OH在水溶液中具有很好的分散性,平均水合粒径约为1246.7 nm。BNNTs-OH具有特殊的荧光特性,在一定的激发波长下可以发红色的光,实现材料在细胞内的定位。细胞毒性测试表明,BNNTs-OH对人胚胎肝细胞系L02细胞未呈现毒性。  相似文献   
8.
分别以Nb、Nb/(Au+Pd)、不锈钢箔和不锈钢箔/二茂铁作为基片/催化剂,高温裂解无水乙醇制备碳纳米管,并研究了纳米管形貌和产率的变化.发现在纯净Nb片上得不到碳纳米管,而以Nb/(Au+Pd)作为基片/催化剂时,碳纳米管产率高、直径较细且长度较长;在纯净不锈钢箔上生长碳纳米管的直径很细但长度非常短,而乙醇中加入二茂铁后纳米管变长且粗.  相似文献   
9.
本文以氮化硅(Si3N4)和氧化铪(HfO2)为原料,在N2气氛条件下于1700℃直接热处理合成了大量的Si3N4纳米带.采用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)等方法对样品的物相、微观结构进行了表征.结果表明:合成的Si3N4纳米带厚约50 nm,长达数百微米,纯度高且结晶好.纳米带沿α-Si3N4的[201]方向生长,属于气-固(VS)生长机制.Si3N4纳米带在360~ 496 nm范围内具有较强的发射峰,表明所合成的Si3N4纳米带具有优异的光致发光性质,在光电纳米器件中具有潜在的应用前景.  相似文献   
10.
FeNb11O29由于其高的理论充电容量(400 mAh·g-1),作为锂离子电池(LIBs)负极材料具有很大的应用前景。然而,目前报道的FeNb11O29实际容量仅有168~273 mAh·g-1。因此,有必要进一步提高其电化学性能。本文介绍了一种制备Ga掺杂FeNb11O29材料的方法,成功合成了GaxFe1-xNb11O29(x=0.1,0.2)。结果表明,Ga0.2Fe0.8Nb11O29的电导率比FeNb11O29提高了两个数量级。X射线衍射结果显示,Ga掺杂不会改变FeNb11O29的正交剪切ReO3晶体结构。扫描电镜结果显示,材料的微观形貌没有发生明显改变。电化学实验表明,Ga0.2Fe0.8Nb11O29具有较好的电化学性能,在电流密度为0.1 C时,Ga0.2Fe0.8Nb11O29充电容量为290 mAh·g-1,当电流密度达到5 C时容量仍能保持145 mAh·g-1,此外,Ga0.2Fe0.8Nb11O29具有良好的循环稳定性,在电流密度为5 C时循环1 000圈之后,容量保持率为91.0%,而不掺杂的FeNb11O29的充电容量仅有107 mAh·g-1,容量保持率仅为55.9%。利用Ga掺杂改善FeNb11O29负极材料的电化学性能在锂离子电池中具有广阔的应用前景。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号