首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   3篇
综合类   6篇
化学工业   31篇
建筑科学   2篇
轻工业   35篇
石油天然气   3篇
一般工业技术   12篇
  2024年   1篇
  2023年   4篇
  2022年   2篇
  2021年   6篇
  2020年   1篇
  2019年   2篇
  2018年   5篇
  2016年   5篇
  2015年   4篇
  2014年   11篇
  2013年   9篇
  2012年   8篇
  2011年   7篇
  2010年   1篇
  2009年   1篇
  2008年   4篇
  2007年   2篇
  2006年   7篇
  2005年   7篇
  2004年   1篇
  2003年   1篇
排序方式: 共有89条查询结果,搜索用时 15 毫秒
1.
采用1m3环境舱模拟真实生活环境,通过改变温度、相对湿度、换气速率、承载率及释放部位等因素,考察对甲醛释放的影响。结果表明:(1)温度、相对湿度的增加会促进毛皮中的甲醛释放,且温度的影响更为明显。当温度从18℃增加到35℃.甲醛的最大释放量增加了102.51%。相对湿度从40%增加到60%.甲醛的最大释放量仅增加了15.52%。(2)随承载率的增加,释放源增多,甲醛释放量随之增加。通风换气,可以有效降低甲醛平衡浓度,改善室内环境质量。(3)毛皮的两面均为甲醛释放部位,肉面的甲醛释放量要略低于毛面。实际使用过程中,对毛皮的释放部位做适当封闭处理(加内衬、涂饰等)可以有效降低甲醛释放。  相似文献   
2.
为提高聚氨酯泡沫(PUF)的疏水性能,首先采用十六烷基三甲氧基硅烷(HDTMS)对花生壳粉末(PSP)进行改性,得到疏水改性花生壳粉末(H-PSP)。水接触角测试结果表明,改性后H-PSP的水接触角由PSP的0°提高至145.2°。然后采用预聚体法制备了PUF负载H-PSP复合材料(H-PSP-PUF-n,n为H-PSP占聚氨酯预聚体PPU的质量分数)。对H-PSP-PUF-n的结构和性能进行了表征与测试。结果表明,H-PSP的负载提高了泡沫材料的表面粗糙度和力学性能,H-PSP的最佳负载量为PPU质量的10%(H-PSP-PUF-10)。与PUF相比,H-PSP-PUF-10的静态水接触角达到142.4°,较PUF提高了50.4°。对二氯甲烷、石油醚、煤油、二甲苯、环己烷五种油品进行油水分离实验,结果表明,H-PSP-PUF-10对不同油品的吸油倍率在7~9 g/g,而且具有良好的油水选择性。经15次吸附-脱附循环后,H-PSP-PUF-10对各油品的吸油倍率在6.5~8.0 g/g,具有良好的循环利用性。  相似文献   
3.
对加脂助剂SFO进行了磷酸化改性和亚硫酸化改性,然后对改性产物进行了红外分析,最后对制备的加脂剂进行应用试验,结果表明:磷酸化改性加脂助剂SFO加脂剂的综合应用效果比其业硫酸化改性加脂剂的综合应用效果好,加脂助剂SF0有助丁提高染料的吸收率,使成革的染色效果增强,由于加脂助剂SFO具有优良的性能,绎过复配后的加脂剂应用性能呵以达到MK加脂剂的应用性能。  相似文献   
4.
分别采用盐酸和乙醛酸对0.5代聚酰胺-胺(G0.5 PAMAM)和1代聚酰胺-胺(G1 PAMAM)进行改性,得到了0.5代端羧基的树枝状大分子(G0.5PAMAM—COOH)和1.0代端羧基的树枝状大分子(G1 PAMAM—COOH)。采用单因素实验优化了乙醛酸改性G1 PAMAM的反应条件,即n(G1 PAMAM)∶n(乙醛酸)为1∶12,反应温度为35℃,反应时间为2h。采用G0.5 PAMAM—COOH和G1 PAMAM—COOH对超细纤维合成革基布进行改性,结果表明,改性后基布的透水汽性分别提高了26.97%和34.59%。SEM显示改性后基布纤维松散程度增加,孔隙变大。水接触角测试表明改性后基布上的亲水基团增多,经G0.5 PAMAM—COOH与G1 PAMMA—COOH改性的基布,其渗水时间较之未改性基布分别缩短了71.74%和78.26%,表明超细纤维合成革基布的卫生性能得到改善。  相似文献   
5.
采用戊二醛作为交联剂,将水解明胶制备的胶原蛋白作为改性剂,对超细纤维合成革基布进行改性研究,探讨了基布的上染率、表面色度、耐干湿擦牢度等性能的变化,并采用化学分析法分别测定了改性前后基布上氨基和羧基的含量。结果表明,最佳改性工艺条件为水解胶原蛋白用量15%,戊二醛用量8.0%,改性时间5h,温度35℃,体系pH值7.0;改性后基布的上染率提高了45.63%,基布表面的颜色增深,染色牢度增加,耐干擦和耐湿擦牢度提高。采用SEM、EDS、FT-IR、AFM、DSC-TGA和接触角分别对改性前后的基布试样进行了表征,结果显示,改性后基布表面引入了大量的活性基团,其表面粗糙度减小,润湿性提高,基布的纤维松散程度增大,热性能也有一定的变化。  相似文献   
6.
超支化聚合物铬鞣助剂的合成及应用   总被引:7,自引:0,他引:7  
通过“准一步法”由丁二酸酐和二乙醇胺合成了一种超支化聚合物,然后再与马来酸酐反应,得到一种超支化聚合物铬鞣助剂,并进行应用试验。结果表明:该铬鞣助剂在加入铬粉前使用效果最好,当使用量为1%时,铬鞣废液中的Cr2O3含量可减少45%。超支化聚合物铬鞣助剂的加入,可以保证皮革粒面的细致,使鞣后皮革的Ts有所提高。  相似文献   
7.
用对羟基苯甲酸(p-HBzA)对壳寡糖(OCS)进行接枝改性,得到了对羟基苯甲酸接枝壳寡糖(p-HBz A-g-OCS)。将p-HBz A-g-OCS作为交联剂,与水性聚氨酯预聚体(PPU)聚合,合成了对羟基苯甲酸-壳寡糖改性水性聚氨酯(HOCS-WPU)。通过FTIR和UV-Vis证实了样品的结构;分别用DLS、力学性能分析、XRD、TGA、ABTS和DPPH自由基清除率对HOCS-WPU的性能进行了考察。结果显示:当加入质量分数为2%的p-HBz A-g-OCS(以合成PPU原料的总质量计)时,HOCS-WPU乳液粒径较小,为57.85nm,相比未改性WPU,HOCS-WPU胶膜的拉伸强度从14.03 MPa提高到16.85 MPa,结晶度从3.57%下降到3.45%;初始分解温度从204.6℃提高到216.7℃。自由基清除率测定结果显示:当HOCS-WPU的质量浓度为2.5 g/L时,该聚合物的ABTS和DPPH自由基的清除率分别达到了62%和35%,抗氧化活性相比未改性WPU明显提高。  相似文献   
8.
以皮革废弃物提取的明胶为原料,丙烯酰胺(AM)、丙烯酰氧乙基三甲基氯化铵(DAC)和丙烯酸丁酯(BA)为单体[n(AM)∶n(DAC)∶n(BA)=80∶18∶2],叔丁基过氧化氢和焦亚硫酸钠为引发剂,接枝共聚合成了疏水改性阳离子胶原蛋白絮凝剂P(C-AM-DAC-BA)。以絮凝剂对油田模拟废水浊度的去除率为指标,探讨了明胶与单体的质量比、引发剂浓度、接枝温度、接枝时间对絮凝效果的影响。通过响应面法优化得到了P(C-AM-DAC-BA)接枝共聚最佳条件为m(明胶)∶m(单体)=1∶2.04、引发剂浓度0.032 mol/L、接枝温度49℃、接枝时间2.8 h。在该条件下,P(C-AM-DAC-BA)对油田模拟废水浊度去除率为91.5%。  相似文献   
9.
为了提高水性聚氨酯耐水性等性能,以异佛尔酮二异氰酸酯(IPDI)、聚四亚甲基醚二醇(PTMG)、二羟甲基丙酸(DMPA)、1,4-丁二醇(BDO)等为原料,二月桂酸二丁基锡(DBTDL)为催化剂,通过预聚体法合成了单端封闭的聚氨酯预聚体(PPU),然后以一代端羟基树枝状聚合物(PAMAM-OH)为核,通过接枝共聚法制备了树枝状水性聚氨酯(HWPU)。通过单因素分析法优化出PPU的最佳合成条件:反应时间为2 h,反应温度为80℃,n(NCO)∶n(OH)为6∶1。采用FIIR、XRD和纳米粒度表面电位分析仪对产物的结构和性能进行了表征,并对胶膜的耐水性、表面粗糙度和力学性能进行了测试。结果表明:HWPU乳液粒径为43.56 nm,胶膜结晶度为1.59%,胶膜24 h的吸水率为4.8%,拉伸强度为39.2 MPa,断裂伸长率为376.4%,胶膜表面粗糙度降低。与未加PAMAM-OH的水性聚氨酯(WPU)相比,HWPU的吸水率降低了67.1%,拉伸强度提高了74.2%,耐水性和拉伸强度得到明显提高。  相似文献   
10.
将聚对苯二甲酸乙二醇酯(PET)纤维置入过冷态的聚乙二醇(PEG)和聚己二酸丁二酯(PBA)熔体,制备了PET纤维/PEG基体和PET纤维/PBA基体复合体系。使用偏光显微镜和原子力显微镜研究了这两种异质复合体系的界面结晶形态,利用接触角测量仪测量了附生结晶法改性前后PET纤维织物的接触角。结果表明,纤维置入温度和结晶等条件决定附生体系的横穿晶体形态结构,选取合适的树脂并采用附生结晶的方法可明显改善PET纤维织物的表面浸润性,并有望改善PET纤维增强复合材料内部的界面结构。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号