首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17547篇
  免费   1435篇
  国内免费   1280篇
电工技术   430篇
综合类   745篇
化学工业   4754篇
金属工艺   2870篇
机械仪表   961篇
建筑科学   144篇
矿业工程   281篇
能源动力   820篇
轻工业   205篇
水利工程   25篇
石油天然气   188篇
武器工业   100篇
无线电   2688篇
一般工业技术   3274篇
冶金工业   2148篇
原子能技术   229篇
自动化技术   400篇
  2024年   23篇
  2023年   315篇
  2022年   442篇
  2021年   514篇
  2020年   578篇
  2019年   449篇
  2018年   394篇
  2017年   545篇
  2016年   536篇
  2015年   594篇
  2014年   844篇
  2013年   832篇
  2012年   1133篇
  2011年   1315篇
  2010年   868篇
  2009年   1019篇
  2008年   843篇
  2007年   1063篇
  2006年   1037篇
  2005年   846篇
  2004年   769篇
  2003年   768篇
  2002年   674篇
  2001年   637篇
  2000年   596篇
  1999年   387篇
  1998年   340篇
  1997年   293篇
  1996年   251篇
  1995年   244篇
  1994年   177篇
  1993年   136篇
  1992年   155篇
  1991年   148篇
  1990年   176篇
  1989年   142篇
  1988年   42篇
  1987年   22篇
  1986年   13篇
  1985年   8篇
  1984年   14篇
  1983年   7篇
  1982年   12篇
  1981年   10篇
  1980年   8篇
  1979年   14篇
  1978年   7篇
  1977年   5篇
  1976年   6篇
  1975年   7篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Compositional analysis of boron carbide on nanometer length scales to examine or interpret atomic mechanisms, for example, solid-state amorphization or grain-boundary segregation, is challenging. This work reviews advancements in high-resolution microanalysis to characterize multiple generations of boron carbide. First, ζ-factor microanalysis will be introduced as a powerful (scanning) transmission electron microscopy ((S)TEM) analytical framework to accurately characterize boron carbide. Three case studies involving the application of ζ-factor microanalysis will then be presented: (1) accurate stoichiometry determination of B-doped boron carbide using ζ-factor microanalysis and electron energy loss spectroscopy, (2) normalized quantification of silicon grain-boundary segregation in Si-doped boron carbide, and (3) calibration of a scanning electron microscope X-ray energy-dispersive spectroscopy (XEDS) system to measure compositional homogeneity differences of B/Si-doped arc-melted boron carbides in the as-melted and annealed conditions. Overall, the improvement and application of advanced analytical tools have helped better understand processing–microstructure–property relationships and successfully manufacture high-performance ceramics.  相似文献   
2.
HFC-134a is a widely used environment-friendly refrigerant. At present, China is the largest producer of HFC-134a in the world. The production of HFC-134a in China mainly adopts the calcium carbide acetylene route. However, the production route has high resource and energy consumption and large waste emission, and few of the studies addressed on the environmental performance of its production process. This study quantified the environmental performance of HFC-134a production by calcium carbide route via carrying out a life cycle assessment (LCA) using the CML 2001 method. And uncertainty analysis by Monte-Carlo simulation was also carried out. The results showed that electricity had the most impact on the environment, followed by steam, hydrogen fluoride and chlorine, and the impact of direct CO2 emissions in calcium carbide production stage on the global warming effect also could not be ignored. Therefore, the clean energy (e.g., wind, solar, biomass, and natural gas) was used to replace coal-based electricity and coal-fired steam in this study, showing considerable environmental benefits. At the same time, the use of advanced production technologies could also improve environmental benefits, and the environmental impact of the global warming category could be reduced by 4.1% via using CO2 capture and purification technology. The Chinese database of HFC-134a production established in this study provides convenience for the relevant study of scholars. For the production of HFC-134a, this study helps to better identify the specific environmental hotspots and proposes useful ways to improve the environmental benefits.  相似文献   
3.
4.
研究了镍基高温合金GH202在800~1100 ℃高温氧化后晶粒、碳化物和强化相的演变过程。采用透射电子显微镜、扫描电子显微镜和电子背散射衍射对其微观结构进行了表征。结果表明:镍基高温合金的硬度随氧化温度的升高而降低,1100 ℃氧化100 h后,硬度降低了43.5%。800和900 ℃氧化后晶粒生长速度较慢,而经900 ℃氧化后晶界碳化物析出显著增加。在1000和1100 ℃氧化后,晶粒尺寸明显增大。氧化过程中晶界迁移是由晶界两侧自由能差决定,温度越高,晶界向曲率中心迁移越快,大量细小晶粒被吞并形成了大晶粒。大块状碳化物(MC)分解成大量的碳原子,与Cr原子结合形成少量的富Cr颗粒状M23C6。在900 ℃氧化150 h后,M23C6演化为富Ti的M6C。随着氧化温度的升高,碳化物在γ相中回熔。在800、900和1000 ℃氧化后,γ′相逐渐长大,在1100 ℃氧化100 h后,完全溶解于γ相。  相似文献   
5.
《Ceramics International》2021,47(20):28260-28267
Piezoelectric materials are an indispensable part of modern life. Yet the existing environmental issues with conventional lead-based piezoelectrics has motivated scientist to develop novel substitutes including lead-free piezoelectric polymer composites. Following this path, the present research has focused on the fabrication of ternary composites of Polyvinylidene fluoride (PVDF)/Potassium Sodium Niobate (KNN)/nano-Silicon carbide (SiC) via hot compression molding and studying the effect of additives on the PVDF structure and the electrical properties of the composite. The obtained scanning electron micrographs and density measurements showed that the fabrication method provided dense samples. The activated polarization phenomena in the prepared samples enhanced dielectric permittivity and dielectric loss at a constant frequency with increasing KNN and SiC contents. Besides the expected dipole polarization, the presence of interfaces in the composites gave rise to the Maxwell–Wagner–Sillars effect and its corresponding polarization phenomenon. The semiconductive nature of SiC also promoted space charge polarization. However, these properties were frequency-dependent because the first two polarization mechanisms are deactivated at high frequencies. XRD patterns showed that SiC addition can alter the primary crystalline structure of PVDF and promote β-phase formation in the poled samples. Piezoelectric measurements confirmed the significant role of SiC addition to PVDF-KNN composites. The most significant increase in the piezoelectric properties was observed in PVDF-60KNN-1SiC, with a 183% increase in d33 value. The PVDF-80KNN-1SiC had the highest d33 value of 30.5 pC/N. It also had the best piezoelectric voltage coefficient and hence the highest figure of merit. Higher SiC contents restrict the efficiency of poling by forming a conductive path across the sample which would deteriorate the piezoelectric performance of the material. The present findings show that PVDF-KNN-SiC composites can be considered as a potential flexible piezoelectric material for future applications.  相似文献   
6.
在多晶硅太阳能电池的生产过程中, 金刚线切割技术(Diamond wire sawn, DWS)具有切割速度快、精度高、原材料损耗少等优点, 受到了广泛关注。金刚线切割多晶硅表面形成的损伤层较浅, 与传统的酸腐蚀制绒技术无法匹配, 金属催化化学腐蚀法应运而生。金属催化化学腐蚀法制绒具有操作简单、结构可控且易形成高深宽比的绒面等优点, 具有广阔的应用前景。本文总结了不同类型的金属催化剂在制绒过程中的腐蚀机理及其形成的绒面结构, 深入分析和讨论了具有代表性的银、铜的单一及复合催化腐蚀过程及绒面结构和电池片性能。最后对金刚线切割多晶硅片表面的金属催化化学腐蚀法存在的问题进行了分析, 并展望了未来的研究方向。  相似文献   
7.
In this study, monolithic B4C and B4C-based ceramics incorporating FeNiCoCrMo dual-phase (FCC and BCC) high entropy alloys (HEAs) were produced by spark plasma sintering (SPS). The effect of additives on the densification behavior, mechanical properties, microstructures, and phase evaluation of the samples were investigated. X-ray analysis confirmed the existence of FCC structured HEA and depletion of BCC structured HEA, after high-temperature reaction between B4C-HEAs. The addition of HEAs enhanced the densification behavior by liquid phase sintering. Furthermore, hardness and fracture toughness values of the samples increased with increasing HEAs content. Fracture toughness and hardness values for all composites were higher than the monolithic B4C. A combination of the highest density (∼99.22 %) and the best mechanical properties (32.3 GPa hardness and 4.53 MPa m1/2 fracture toughness) was achieved with 2.00 vol.% HEA addition.  相似文献   
8.
《Ceramics International》2021,47(23):33353-33362
High thermal conductivity Si3N4 ceramics were fabricated using a one-step method consisting of reaction-bonded Si3N4 (RBSN) and post-sintering. The influence of Si content on nitridation rate, β/(α+β) phase rate, thermal conductivity and mechanical properties was investigated in this work. It is of special interest to note that the thermal conductivity showed a tendency to increase first and then decrease with increasing Si content. This experimental result shows that the optimal thermal conductivity and fracture toughness were obtained to be 66 W (m K)-1 and 12.0 MPa m1/2, respectively. As a comparison, the nitridation rate and β/(α+β) phase rate in a static pressure nitriding system, i.e., 97% (MS10), 97% (MS15), 97% (MS20) and 8.3% (MS10), 8.3% (MS15), 8.9% (MS20), respectively, have obvious advantages over those in a flowing nitriding system, i.e., 91% (MS10), 91% (MS15), 93% (MS20) and 3.1% (MS10), 3.3% (MS15), 3.3% (MS20), respectively. Moreover, high lattice integrity of the β-Si3N4 phase was observed, which can effectively confine O atoms into the β-Si3N4 lattice using MgO as a sintering additive. This result indicates that one-step sintering can provide a new route to prepare Si3N4 ceramics with a good combination of thermal conductivity and mechanical properties.  相似文献   
9.
《Ceramics International》2022,48(6):7344-7361
Zirconium diboride (ZrB2) and silicon carbide (SiC) composites have long been of interest since it was observed that ZrB2 improved the thermal shock resistance of SiC. However, processing of these materials can be difficult due to high and different sintering temperatures and differences in the thermodynamic stability of each material. ZrB2–SiC composites have been processed in a variety of ways including hot-pressing, spark-plasma sintering, reactive melt infiltration, pack cementation, chemical vapor deposition, chemical vapor infiltration, stereolithography, direct ink writing, selective laser sintering, electron beam melting, and binder jet additive manufacturing. Each manufacturing method has its own pros and cons. This review serves to summarize more than 60 years of research and provide a coherent resource for the variety of methods and advancements in development of ZrB2–SiC composites.  相似文献   
10.
《Ceramics International》2022,48(12):16505-16515
Boron carbide has a wide solubility range owing to the substitution of B and C atoms in the crystal. In this study, boron carbides with different stoichiometric ratios were prepared using a hot-pressing sintering method, and the influences of the B/C atomic ratio on the microstructures and properties were explored in detail. X-ray diffraction analysis showed that excessive B atoms caused lattice expansion. Raman spectroscopy analysis showed disordered substitution of B atoms in the chains and icosahedra. Analysis of the densification process and microstructure evolution revealed that the addition of B promoted densification, and more stacking faults and twins occurred in B-rich boron carbide, and result in the densification mechanism gradually changes from atomic diffusion mechanism driven by thermal energy to plastic deformation mechanism dominated by the proliferation of dislocation and substructures. The introduction of chemical composition changes by dissolving excessive B into boron carbide further affected the microstructure and consequently the mechanical properties. The Vickers hardness, modulus, and sound velocity all decreased with the increase in B content. Moreover, the fracture toughness improved with increased B content. The flexural strength of the samples was optimised at the B/C stoichiometric ratio of 6.1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号