首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7516篇
  免费   712篇
  国内免费   781篇
电工技术   380篇
综合类   380篇
化学工业   2207篇
金属工艺   938篇
机械仪表   123篇
建筑科学   350篇
矿业工程   109篇
能源动力   319篇
轻工业   651篇
水利工程   141篇
石油天然气   179篇
武器工业   23篇
无线电   849篇
一般工业技术   1308篇
冶金工业   142篇
原子能技术   658篇
自动化技术   252篇
  2024年   29篇
  2023年   261篇
  2022年   290篇
  2021年   389篇
  2020年   353篇
  2019年   342篇
  2018年   308篇
  2017年   330篇
  2016年   318篇
  2015年   265篇
  2014年   386篇
  2013年   625篇
  2012年   500篇
  2011年   511篇
  2010年   413篇
  2009年   409篇
  2008年   385篇
  2007年   400篇
  2006年   386篇
  2005年   304篇
  2004年   301篇
  2003年   237篇
  2002年   208篇
  2001年   171篇
  2000年   139篇
  1999年   109篇
  1998年   71篇
  1997年   77篇
  1996年   64篇
  1995年   51篇
  1994年   48篇
  1993年   70篇
  1992年   33篇
  1991年   33篇
  1990年   30篇
  1989年   28篇
  1988年   26篇
  1987年   20篇
  1986年   17篇
  1985年   23篇
  1984年   10篇
  1983年   7篇
  1982年   12篇
  1981年   5篇
  1980年   5篇
  1979年   2篇
  1965年   1篇
  1960年   1篇
  1959年   4篇
  1958年   1篇
排序方式: 共有9009条查询结果,搜索用时 15 毫秒
1.
A numerical model is developed for surface crack propagation in brittle ceramic coatings, aiming at the intrinsic failure of rare-earth silicate environmental barrier coating systems (EBCs) under combustion conditions in advanced gas turbines. The main features of progressive degradation of EBCs in such conditions are captured, including selective silica vaporization in the top coat due to exposure to water vapor, diffusion path-dependent bond coat oxidation, as well as crack propagation during cyclic thermal loading. In light of these features, user-defined subroutines are implemented in finite element analysis, where surface crack growth is simulated by node separation. Numerical results are validated by existing experimental data, in terms of monosilicate layer thickening, thermal oxide growth, and fracture behaviors. The experimentally observed quasi-linear oxidation in the early stage is also elucidated. Furthermore, it is suggested that surface crack undergoes rapid propagation in the late stage of extended thermal cycling in water vapor and leads to catastrophic failure, driven by both thermal mismatch and oxide growth stresses. The latter is identified as the dominant mechanism of penetration. Based on detailed analyses of failure mechanisms, the optimization strategy of EBCs composition is proposed, balancing the trade-off between mechanical compliance and erosion resistance.  相似文献   
2.
Repetitive heating and cooling cycles inevitably cause crack damage of hot gas components of gas turbine engines, such as blades and vanes. In this study the self-healing capacity is investigated of mullite + ytterbium monosilicate (Yb2SiO5) as EBC material with Ti2AlC MAX phase particles embedded as a crack-healing agent. The effect of Ti2AlC in the EBC was compared with the self-healing ability of the mullite + Yb2SiO5 material. After introducing cracks by Vickers indentation on the surface of each sample, crack healing was realized by controlling the temperature and time during the post-heat-treatment process. For the mullite + Yb2SiO5 composite with Ti2AlC particles, crack healing occurred at 1000 °C, while in the case of the mullite + Yb2SiO5 composite without Ti2AlC, a sustained temperature of 1300 °C or higher was required. Compared with the healing of the mullite + Yb2SiO5 composite by the formation of a eutectic phase, the addition of Ti2AlC promoted healing via the oxidation of Ti and Al. Notably, the surface formation of a ternary oxide of Ti–Yb–O was confirmed, which completely covered the damage area. Consequently, the addition of a Ti2AlC MAX phase to the EBC composite resulted in a complete strength recovery, while the mullite + Yb2SiO5 composite without Ti2AlC showed a strength recovery of about 80%. Furthermore, by analyzing the indentation load–displacement curve to indicate the role of Ti2AlC, the addition of Ti2AlC improved both the hardness and stiffness of the composite.  相似文献   
3.
This paper investigates the influence of suspension characteristics on microstructure and performance of suspensions plasma sprayed (SPS) thermal barrier coatings (TBCs). Five suspensions were produced using various suspension characteristics, namely, type of solvent and solid load content, and the resultant suspensions were utilized to deposit five different TBCs under identical processing conditions. The produced TBCs were evaluated for their performance i.e. thermal conductivity, thermal cyclic fatigue (TCF) and thermal shock (TS) lifetime. This experimental study revealed that the differences in the microstructure of SPS TBCs produced using varied suspensions resulted in a wide-ranging overall TBC performance. All TBCs exhibited thermal conductivity lower than 1 W/(m. K) except water-ethanol mixed suspension produced TBC. The TS lifetime was also affected to a large extent where 10 wt % solid loaded ethanol and 25 wt % solid loaded water suspensions produced TBCs exhibited the highest and the lowest lifetime, respectively. On the contrary, TCF lifetime was not as significantly affected as thermal conductivity and TS lifetime, and all ethanol suspensions showed marginally better TCF lifetime than water and ethanol-water mixed suspensions deposited TBCs.  相似文献   
4.
A series of rare earth zirconates (RE2Zr2O7) high-entropy ceramics with single- and dual-phase structure were prepared. Compared with La2Zr2O7 and Yb2Zr2O7, the smaller “rattling” ions (Yb3+, Er3+, Y3+) have been incorporated into pyrochlore lattice in (La0.2Nd0.2Y0.2Er0.2Yb0.2)2Zr2O7 (LNYEY) while larger ions (La3+, Nd3+, Sm3+, Eu3+) incorporated into fluorite lattice in (La0.2Nd0.2Sm0.2Gd0.2Yb0.2)2Zr2O7 (LNSGY). Due to high-entropy lattice distortion and resonant scattering derived from smaller ions Yb3+, Er3+, and Y3+, LNYEY shows a lower glass-like thermal conductivity (1.62-1.59 W m-1 K-1, 100-600℃) than LNSGY (1.74-1.75 W m-1 K-1, 100-600℃). Moreover, LNYEY and LNSGY exhibit enhanced Vickers’ hardness (LNYEY, Hv = 11.47 ± 0.41 GPa; LNSGY, Hv = 10.96 ± 0.26 GPa) and thermal expansion coefficients (LNYEY, 10.45 × 10-6 K-1, 1000℃; LNSGY, 11.02 × 10-6 K-1, 1000℃). These results indicate that dual-phase rare-earth-zirconate high-entropy ceramics could be desirable for thermal barrier coatings.  相似文献   
5.
Suspension plasma spraying (SPS) as a potential technique to prepare thermal barrier coatings (TBCs) has been attracting more and more attention. However, most reports on SPS were carried out in the atmosphere. Given the unique features of in-flight particles and plasma jets under low pressure, the resulting coatings are expected to be different from those under atmospheric pressure. In this article, yttria-stabilized zirconia (YSZ) thermal barrier coatings were prepared using suspension plasma spraying under different environmental pressures. The results show that as the environmental pressure decreased, the column-like structural coating turned into a vertical crack segmented structure, as well as a dramatic decrease in surface roughness. More nanoparticle agglomerates were formed in the coating under lower environmental pressures. The real porosity of the coating increased with a decrease in environmental pressure.  相似文献   
6.
Herein, we describe a reduced‐scale test (“Cube” test), measuring the fire performance of specimens including a fire barrier (FB) and a flammable core material, which acts as the main fuel load. The specimen is intended to reproduce a cross‐section of a composite product where heat/mass transfer occurs primarily in a direction perpendicular to the FB. The Cube test procedure and benefits are discussed in this work by adopting residential upholstery furniture as an exemplary study. One flexible polyurethane foam, one polypropylene cover fabric, and 10 commercially available FBs were selected. They were used to compare the fire performance of FBs, measured in terms of peak of heat release rate, in the ASTM E1474‐14 standard test and the newly developed Cube test. Edge effects severely affected the performance of FBs in the ASTM E1474‐14 standard test but not in the Cube test. Furthermore, appropriate test conditions were determined in the Cube test to measure the so‐called “wetting point,” that is, the time and value of heat release rate measured when flammable liquid products were first observed on the bottom of the specimen. The relevance of the “wetting point” in terms of full‐scale fire performance and failure mechanism of FBs is discussed.  相似文献   
7.
Mass transfer in polycrystalline Yb2SiO5 wafers with precise composition control was evaluated and analyzed by oxygen permeation experiments at high temperatures using an oxygen tracer. Oxygen permeation proceeded due to mutual grain boundary diffusion of oxide ions and Yb ions without synergistic effects such as acceleration or suppression. The oxygen shielding properties of Yb2SiO5 were compared with those of the other line compounds such as Yb2Si2O7 and Al2O3 based on the determined mass transfer parameters. It was found that the more preferentially an oxide ion diffuses in the grain boundary compared to the interior of the grain, the greater the effect of suppressing the movement of the oxide ion by applying an oxygen potential gradient becomes.  相似文献   
8.
Titanium dioxide (TiO2) nanopowder (P-25;Degussa AG) was treated using dielectric barrier discharge (DBD) in a rotary electrode DBD (RE-DBD) reactor.Its electrical and optical characteristics were investigated during RE-DBD generation.The treated TiO2 nanopowder properties and structures were analyzed using x-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR).After RE-DBD treatment,XRD measurements indicated that the anatase peak theta positions shifted from 25.3° to 25.1°,which can be attributed to the substitution of new functional groups in the TiO2 lattice.The FTIR results show that hydroxyl groups (OH) at 3400 cm-1 increased considerably.The mechanism used to modify the TiO2 nanopowder surface by air DBD treatment was confirmed from optical emission spectrum measurements.Reactive species,such as OH radical,ozone and atomic oxygen can play key roles in hydroxyl formation on the TiO2 nanopowder surface.  相似文献   
9.
In this paper, we prepare a novel biomimetic caterpillar-like alumina fiber with the characteristic of continuous alumina backbone and fine needle whiskers spine. Then the high-performance caterpillar-like alumina fiber composite proton exchange membrane (CAPEM) is obtained by introducing the amino modified biomimetic caterpillar-like alumina fiber into sulfonated polysulfone (SPSF) matrix, which successfully reasonable construction of the proton conducting channels in both vertical and horizontal orientation. The properties of CAPEM, including proton conductivity, methanol permeability, etc. Are systematically studied. The results show that the proton conductivity of CAPEM increases with rising the temperature, which reaches the maximum of 0.263 S/cm at 80 °C and 100% RH, respectively. The excellent proton conductivity of CAPEM is attributed to the long-range continuous proton conducting channel formed by the horizontal continuous alumina skeleton in the in-plane direction and the vertical overlapped fine needle whiskers spine in the through-plane direction. In addition, the interfacial compatibility between amino modified caterpillar-like alumina fiber and SPSF matrix is enhanced through the reasonable construction of proton conducting channels, which effectively inhibits the methanol permeation of the composite membrane with 4.18 × 10?7 cm2 s?1 and improves the comprehensive performance of the CAPEM.  相似文献   
10.
The 3D geometry of a hydrogen absorbing metal grain (Pd) is mimicked by a membrane made of the metal with identical properties, which is sealed on one side with a hydrogen semi-impermeable surface (Cu). The hydrogen loss through the sealed membrane surface is negligible, i.e., the hydrogen uptake measurement is that of a bulk material (Sieverts measurement), but the surface desorbs sufficient hydrogen to be detected by a mass spectrometer. With this, two independent spatial and temporal kinetic properties are defined which allow the reconstruction of the time dependent hydrogen distribution inside the membrane. As proof of concept, the mechanism of hydride formation in Pd is analyzed, corroborating the formation and growth of incoherent interfaces during hydrogen sorption.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号